# Supporting information

Pyridomethene-BF<sub>2</sub> complex/phenothiazine-hybrid sensitizer with high molar extinction coefficient for efficient sensitized solar cells

Yan-Duo Lin,<sup>a</sup> Bo-Yu Ke,<sup>b</sup> Yuan Jay Chang,<sup>c</sup> Po-Ting Chou,<sup>a</sup> Kang-Ling Liau,<sup>d</sup> Ching-Yang Liu,<sup>b</sup> and Tahsin J. Chow<sup>\*a</sup>

<sup>a</sup> Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan. E-mail: tjchow@gate.sinica.edu.tw

<sup>b</sup> Department of Applied Chemistry Chinese Culture University, Taipei 111, Taiwan.

<sup>c</sup> Department of Chemistry Tung Hai University, Taichung 407, Taiwan.

<sup>d</sup> Department of Chemistry, National Central University, Chung-Li 320, Taiwan.

## Table of contents:

| Page | Contents                                                  |
|------|-----------------------------------------------------------|
| S3   | Synthesis of dyes K, R1 and P3                            |
| S4   | Computation method                                        |
| S6   | Scheme S1 Synthetic scheme for the dyes K1 and K2.        |
| S7   | Scheme S2 Synthetic Scheme for the dyes K3-K5.            |
| S8   | Scheme S3 Synthetic Scheme for the dyes K6 – K8.          |
| S9   | Scheme S4 Synthetic Scheme for the compounds R1 and P3.   |
| S10  | Characterization data of <b>2</b> , <b>5</b> and <b>6</b> |
| S11  | Characterization data of 8                                |
| S12  | Characterization data of 11, 12 and 14                    |
| S13  | Characterization data of 15 and 16                        |
| S14  | Characterization data of 17 and 19                        |
| S15  | Characterization data of 20, 21 and 22                    |
| S16  | Characterization data of 23 and 24                        |
| S17  | Characterization data of <b>25</b>                        |
| S18  | Characterization data of 26, K1 and K2                    |
| S19  | Characterization data of K3 and K4                        |
| S20  | Characterization data of K5 and K6                        |
| S21  | Characterization data of <b>K7</b> and <b>K8</b>          |
| S22  | Characterization data of P3 and R1                        |

| S23-24 | Figure S1. Absorption spectra of (a) K1, (b) K2, (c) K3, (d) K4, (e) K5, (f) K6, (g) K7, (h)                                                            |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | K8, (i) R1, and (j) R2 in different solvents.                                                                                                           |
| S25    | Figure S2. Absorption spectra of (a) K2, (b) K4, (c) K5, (d) K6, (e) K7, (f) K8, and (g) R1                                                             |
|        | in THF solutions before and after the addition of TEA.                                                                                                  |
| S26    | Figure S3. Cyclic voltammograms of the K and R dyes recorded in THF solutions.                                                                          |
| S27    | Figure S4. Frontier orbitals of the K and R dyes optimized with DFT at the B3LYP/6-                                                                     |
|        | 31G(d,p) level.                                                                                                                                         |
| S28    | Figure S5. Frontier orbitals of the K and R dyes optimized with DFT at the B3PW91/6-                                                                    |
|        | 31G (d,p) level.                                                                                                                                        |
| S29    | Figure S6. Frontier orbitals of the K and R dyes optimized with Hartree-Fock 6-31G                                                                      |
|        | (d,p) basis set.                                                                                                                                        |
| S30    | Figure S7. Calculated gas-phase absorption spectra of (a) dyes K1– K5 and (b) dyes K6–                                                                  |
|        | K8, R1 and R2 by using DFT at the B3LYP/6-31G (d,p) level.                                                                                              |
| S31    | Figure S8. Calculated gas-phase absorption spectra of (a) dyes K1– K5 and (b) dyes K6–                                                                  |
|        | K8, R1 and R2 by using DFT at the B3PW91/6-31G(d,p) level.                                                                                              |
| S32    | Figure S9. Calculated gas-phase absorption spectra of (a) dyes K1– K5 and (b) dyes K6–                                                                  |
|        | K8, R1 and R2 by using Hartree-Fock 6-31G (d,p) basis set.                                                                                              |
| S33    | Figure S10. (a) The IPCE and (b) current-voltage plots for the DSSC made with dye $K1$                                                                  |
|        | with or without DCA.                                                                                                                                    |
| S34    | Figure S11. The electrochemical impedance spectra of (a) Nyquist plots, and (b) Bode                                                                    |
|        | phase plots for the DSSC based on <b>K</b> and <b>R</b> with DCA.                                                                                       |
| S35    | Figure S12. Absorption spectra of (a) K2, (b) K3, (c) K5, (d) K6, (e) K7, and (f) K8                                                                    |
|        | absorbed on nanocrystalline TiO <sub>2</sub> films before and after light irradiation (30 min).                                                         |
| S36-37 | <b>Table S1</b> Calculated TDDFT excitation energies (E), oscillator strengths (f), MO                                                                  |
|        | compositions and characters, are compared with experimental absorptions based on                                                                        |
|        | DFT at the B3LYP/6-31G (d,p) level.                                                                                                                     |
| S38-39 | Table S2CalculatedTDDFTexcitationenergies(E),oscillatorstrengths(f),MO                                                                                  |
|        | compositions and characters, are compared with experimental absorptions based on                                                                        |
|        | DFT at the B3PW91/6-31G (d,p) level.                                                                                                                    |
| S40-41 | Table S3         Calculated         TDDFT         excitation         energies         (E),         oscillator         strengths         (f),         MO |
|        | compositions and characters, are compared with experimental absorptions based on                                                                        |
|        | Hartree-Fock 6-31G (d,p) basis set.                                                                                                                     |
| S42    | Table S4 DSSC performance parameters of dye K1 with or without DCA as co-                                                                               |
|        | adsorbent.                                                                                                                                              |

#### Synthesis of dyes K, R1 and P3

The synthetic route of organic dyes K, R1 and P3 are depicted in Scheme S1–S4. Reaction of the pyridomethene-BF<sub>2</sub> complex  $\mathbf{1}^{S1}$  with the commercially available bis(pinacol)borane in the presence of PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> and KOAc in refluxing toluene affords the desired pyridomethene-BF<sub>2</sub> complex pinacolboronates  $\mathbf{2}$  in good yields. Suzuki coupling reaction on 2 with compound 3<sup>S2</sup> or 4<sup>S2</sup> result in the corresponding aldehyde or bromo derivatives. Bromo derivative **6** was coupled with **7**<sup>S3</sup> by a Stille coupling reaction, by following acidic hydrolysis to afford 8. A Knoevenagel reaction was then used to condense compound 5 or 8 with 2-cyanoacrylic acid to obtain the target dyes K1 and K2. Compound 11 and 12 were synthesized through a Suzuki coupling reaction of thiophene derivatives 9 and 10, respectively. Compound 14, 15 and 17 were synthesized through Suzuki coupling reaction to afforded corresponding aldehyde precursors, followed by treatment with 2-cyanoacrylic acid in the presence of ammonium acetate afforded the dyes K3, K4, and K5, respectively. The synthesis of dye K6-K8 started from phenothiazine, which was coupled with 1,4dibromobenzene through a palladium-catalyzed aromatic C-N bond formation. A Vilsmeier reaction of 18 with a mixture of DMF and POCl<sub>3</sub> produced compound 19. Bromination of 19 with NBS, followed by a Suzuki coupling reaction of the obtained intermediate 20 with compound 2, gave compound 21. Further treatment of this intermediate with bis(pinacol)borane affords the desired 22 that was coupling with compound 10 and 12, respectively yielding the corresponding aldehyde derivatives 23 and 24, respectively. A Suzuki coupling reaction between intermediate 23 and pinacol ester of pyridomethene-BF<sub>2</sub> complex 2 afforded compound 25. Subsequent Knoevenagel condensation of 25 and 24 with 2-cyanoacrylic acid in the presence of ammonium acetate afforded the dyes K6 and K7. In addition, compound 19 is react with 2 under Suzuki coupling condition to give compound 26. Finally, Knoevenagel condensation of aldehyde 26 and cyanoacetic acid give the dye K8. Compound **28** was made from **13**<sup>S4</sup> with **27** by a Suzuki coupling reaction, followed by Knoevenagel condensation to construct the reference **R1**. In addition, the parent compound **P3** was synthesized via Suzuki coupling reaction of **1** with phenylboronic acid.

### Computation method

The entire quantum chemical calculations have been performed at DFT (B3LYP and B3PW91) and Hartree-Fock with 6-31G (d,p) basis sets using the Gaussian 03W program.<sup>55</sup>

#### **References:**

- S1. Kubota, T. Tsuzuki, K. Funabiki, M. Ebihara and M. Matsui, Org. Lett., 2010, 12, 4010.
- S2. C.-J. Yang, Y. J. Chang, M. Watanabe, Y.-S. Hon and T. J. Chow, *J. Mater. Chem.*, 2012, **22**, 4040.
- S3. R. Y.-Y. Lin, F. L. Wu, C. H. Chang, H.-H. Chow, T. M. Chuang, T. C. Chu, C.-Y. Hsu, P.-W.
  Chen, K.-C. Ho, Y.-H. Lo and J. T. Lin, *J. Mater. Chem. A* 2014, *2*, 3092.
- S4. C. S Krämer, T. J. Zimmermann, M. Sailer, T. J. J. Müller, Synthesis, 2002, 9, 1163.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S.Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K.Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A.

Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Gaussian Inc., Pittsburgh, PA, 2003.



Scheme S1 Synthetic Scheme for the dyes K1 and K2.



Scheme S2 Synthetic Scheme for the dyes K3-K5.



Scheme S3 Synthetic Scheme for the dyes K6–K8.



Scheme S4 Synthetic Scheme for the compounds R1 and P3.

Synthesis of compound 2. Compound 1 (2.1 g, 6.52 mmol), bis(pinacolato)diboron (1.99 g, 7.83 mmol), KOAc (1.91 g, 19.56 mmol), and Pd(PPh<sub>3</sub>)Cl<sub>2</sub> (0.234 g, 0.326 mmol) in 65 mL of anhydrous toluene under nitrogen was heated at 120 °C for 18 h. The solution was cooled and then 30 mL of CH<sub>2</sub>Cl<sub>2</sub> was added. The insoluble residue was filtered off and the filtrate was concentrated *in vacuo* to afford the crude product. Further purification was performed by column chromatography, using a mixture of CH<sub>2</sub>Cl<sub>2</sub> and n-hexane (2:1) as the elution to provide white solids in 94% yield. Mp 185—186 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.55 (s, 1H), 8.23 (s, 1H), 7.76—7.73 (m, 1H), 7.59 (d, *J* = 7.5Hz, 1H), 7.50 (t, *J* = 7.5 Hz, 1H), 6.97 (s, 1H), 1.35 (s, 12H) ppm; <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  151.34, 150.68, 145.32, 143.76, 139.75, 138.46, 120.43, 119.11, 118.95, 115.66, 84.80, 70.89, 25.05 ppm; <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>):  $\delta$  -138.21 (q, *J* = 30.1 Hz, 2F); FAB-HRMS calcd for C<sub>18</sub>H<sub>19</sub>B<sub>2</sub>F<sub>2</sub>N<sub>3</sub>O<sub>2</sub> (M <sup>+</sup>) 369.1631, found 369.1629.

**Synthesis of compound 5.** Compound **5** was synthesized via the typical Suzuki reaction procedure. Further purification was performed by column chromatography, using a mixture of CH<sub>2</sub>Cl<sub>2</sub> and n-hexane (2:1) as the elution to provide yellow solids in 82 % yield. Mp 236—237 °C; <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>): δ 9.78 (s, 1H), 8.41 (s, 1H), 8.34 (s, 1H), 8.33 (s, 1H), 8.00 (t, *J* = 8.5 Hz, 1H), 7.74 (d, *J* = 8.5 Hz, 1H), 7.63—7.60 (m, 3H), 7.55—7.51 (m, 2H), 7.22—7.18 (m, 3H), 4.00 (t, *J* = 7.0 Hz, 2H), 1.72 (t, *J* = 7.0 Hz, 2H), 1.42 (t, *J* = 7.0 Hz, 2H), 1.28—1.26 (m, 4H), 0.85 (t, *J* = 7.0 Hz, 3H) ppm; <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>): δ 191.08, 149.96, 149.71, 148.38, 143.52, 141.47, 139.15, 138.75, 134.73, 131.50, 130.71, 130.32, 128.34, 127.40, 126.16, 125.20, 124.07, 123.56, 120.14, 119.82, 118.89, 117.43, 116.87, 116.20, 68.85, 47.53, 31.23, 26.50, 26.13, 22.51, 14.29 ppm; <sup>19</sup>F NMR (470 MHz, DMSO-*d*<sub>6</sub>): δ -138.60 (q, *J* = 30.1 Hz, 2F); FAB-HRMS calcd for C<sub>31</sub>H<sub>27</sub>BF<sub>2</sub>N<sub>4</sub>OS (M <sup>+</sup>) 552.1967, found 552.1974.

**Synthesis of compound 6.** Compound **6** was synthesized via the typical Suzuki reaction procedure. Further purification was performed by column chromatography, using a mixture of CH<sub>2</sub>Cl<sub>2</sub> and nhexane (1:1) as the elution to provide yellow solids in 58 % yield. Mp 235—236 °C; <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>): δ 8.44 (s, 1H), 8.33 (s, 1H), 8.32 (s, 1H), 8.00 (t, *J* = 8.0 Hz, 1H), 7.99—7.51 (m, 4H), 7.37 (s, 1H), 7.36 (s, 1H), 7.18 (t, *J* = 7.0 Hz, 1H), 7.12 (d, *J* = 9.0 Hz, 1H), 6.99 (d, *J* = 9.0 Hz, 1H), 3.89 (t, *J* = 7.0 Hz, 2H), 1.68 (t, *J* = 7.0 Hz, 2H), 1.39 (t, *J* = 7.0 Hz, 2H), 1.26—1.24 (m, 4H), 0.83 (t, *J* = 7.0 Hz, 3H) ppm; <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>): δ 149.72, 148.29, 144.91, 144.14, 141.42, 139.18, 138.74, 134.60, 130.72, 129.50, 129.48, 127.62, 126.12, 125.17, 124.29, 120.14, 119.81, 118.91, 118.05, 116.89, 116.83, 114.39, 68.84, 47.12, 31.25, 26.47, 26.20, 22.52, 14.29 ppm; <sup>19</sup>F NMR (470 MHz, DMSO-*d*<sub>6</sub>): δ -138.52 (q, *J* = 30.1 Hz, 2F); FAB-HRMS calcd for C<sub>30</sub>H<sub>26</sub>BBrF<sub>2</sub>N<sub>4</sub>S (M<sup>+</sup>) 604.1123, found 604.1119.

Synthesis of compound 8. Compound 6 (0.4 g, 0.66 mmol), compound 7 (0.29 g, 0.66 mmol), and Pd(PPh<sub>3</sub>)Cl<sub>2</sub> (0.014 g, 0.02 mmol) in 3 mL of anhydrous DMF under nitrogen was heated at 90 °C for 18 h. The solution was cooled and then 30 mL of CH<sub>2</sub>Cl<sub>2</sub> was added. The insoluble residue was filtered off and the filtrate was concentrated *in vacuo* to afford the crude product. A mixture of this compound (0.38 g, 0.56 mmol), acetic acid (3 mL), THF (1.5 mL), and water (0.6 mL) was heated at 60 °C for 4 h. The reaction mixture was diluted with ethyl acetate, washed with water and saturated NaHCO<sub>3</sub>. The organic layer was dried over anhydrous MgSO<sub>4</sub>. The filtrate was concentrated under reduced pressure. Column chromatograph with a mixture of CH<sub>2</sub>Cl<sub>2</sub> and n-hexane (1:1) as the elution afforded the desired product as yellow solid (0.33 g, 92 % yield). Mp 260–261 °C; <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  9.88 (s, 1H), 8.46 (s, 1H), 8.34–8.33 (m, 2H), 8.02–7.99 (m, 2H), 7.68–7.51 (m, 7H), 7.20–7.10 (m, 3H), 3.96 (t, *J* = 7 Hz, 2H), 1.71 (t, *J* = 7.0 Hz, 2H), 1.42 (t, *J* = 7.0 Hz, 2H), 1.29–1.26 (m, 4H), 0.84 (t, *J* = 7.0 Hz, 3H) ppm; <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  151.80, 149.27, 147.80, 145.17, 143.90, 141.17, 140.98, 139.42, 138.74, 138.25, 134.15, 129.18, 127.13, 126.94, 126. 71, 125.96, 125.67, 124.70, 124.47, 124.02, 123.82, 123.58, 119.63, 119.34, 118.46, 116.45, 116.25, 46.74, 30.79, 26.06, 25.73, 22.06, 13.83 ppm; <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>):  $\delta$  -138.52 (q, *J* =

30.1 Hz, 2F); FAB-HRMS calcd for C<sub>35</sub>H<sub>29</sub>BF<sub>2</sub>N<sub>4</sub>OS<sub>2</sub> (M<sup>+</sup>) 634.1844, found 634.1838.

**Synthesis of compound 11.** Compound **11** was synthesized via the typical Suzuki reaction procedure. Further purification was performed by column chromatography, using a mixture of CH<sub>2</sub>Cl<sub>2</sub> and n-hexane (1:1) as the elution to provide yellow solid in 58 % yield.Mp 236—237 °C; <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>): δ 8.23 (s, 1H), 8.19 (s, 1H), 8.16 (s, 1H), 7.79—7.61 (m, 1H), 7.59—7.54 (m, 2H), 7.05 (d, *J* = 11.5 Hz, 2H), 6.97 (t, *J* = 7.0 Hz, 1H) ppm; <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>): δ 150.19, 148.92, 139.66, 139.24, 138.08, 137.89, 136.61, 134.03, 131.23, 124.33, 120.58, 120.33, 118.56, 115.63, 112.71 ppm; <sup>19</sup>F NMR (470 MHz, DMSO-*d*<sub>6</sub>): δ -138.53 (q, *J* = 30.1 Hz, 2F); FAB-HRMS calcd for C<sub>16</sub>H<sub>9</sub>BBrF<sub>2</sub>N<sub>3</sub>S (M<sup>+</sup>) 404.9762, found 404.9758.

**Synthesis of compound 12.** Compound **12** was synthesized via the typical Suzuki reaction procedure. Further purification was performed by column chromatography, using a mixture of CH<sub>2</sub>Cl<sub>2</sub> and n-hexane (1:1) as the elution to provide yellow solid in 77 % yield. Mp 239—240 °C; <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>): δ 8.28 (s, 1H), 8.21 (s, 1H), 8.27 (d, *J* = 9.0 Hz, 1H), 7.80—7.72 (m, 2H), 7.58 (t, *J* = 8.2 Hz, 2H), 7.01 (s, 1H), 6.98 (t, *J* = 6.8 Hz, 1H), 2.58 (t, *J* = 7.5 Hz, 2H), 1.66—1.58 (m, 2H), 1.40—1.31 (m, 6H), 0.90 (t, *J* = 6.7 Hz, 3H) ppm; <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>): δ 149.69, 148.58, 144.01, 142.22, 141.29, 138.63, 137.67, 137.45, 133.32, 126.49, 122.34, 120.37, 119.81, 118.10, 116.91, 108.45, 31.53, 29.47, 29.42, 28.76, 22.49, 13.91 ppm; <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>): δ -138.51 (q, *J* = 30.1 Hz, 2F); FAB-HRMS calcd for C<sub>23</sub>H<sub>23</sub>BBrF<sub>2</sub>N<sub>3</sub>S (M<sup>+</sup>) 501.0857, found 501.0850.

**Synthesis of compound 14.** Compound **14** was synthesized via the typical Suzuki reaction procedure. Further purification was performed by column chromatography, using CH<sub>2</sub>Cl<sub>2</sub> as the elution to provide orange solid in 60 % yield. Mp 275—276 °C; <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>): δ 9.80 (s, 1H), 8.41 (s, 1H), 8.37 (s, 1H), 8.28 (d, *J* = 9.5 Hz, 1H), 8.03 (t, *J* = 7 Hz, 1H), 7.72 (t, *J* = 11.5 Hz, 1H), 7.70 (s, 1H), 7.63 (s, 1H), 7.57—7.54 (m, 5H), 7.23—7.19 (m, 2H), 7.29 (t, *J* = 8 Hz, 1H) ppm; <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>): δ 191.05, 149.89, 149.56, 148.25, 143.04, 142.62, 141.65, 138.84, 137.88,

136.52, 133.17, 131.47, 130.71, 129.11, 128.36, 126.93, 125.49, 125.30, 124.15, 123.92, 123.34, 122.99, 120.52, 119.96, 119.71, 117.40, 117.21, 116.17, 69.60, 47.56, 31.23, 26.50, 26.12, 22.51, 14.29 ppm; <sup>19</sup>F NMR (376 MHz, DMSO- $d_6$ ): δ -138.61 (q, J = 30.1 Hz, 2F); FAB-HRMS calcd for  $C_{35}H_{29}BF_2N_4OS_2$  (M<sup>+</sup>) 634.1844, found 634.1834.

**Synthesis of compound 15.** Compound **15** was synthesized via the typical Suzuki reaction procedure. Further purification was performed by column chromatography, using CH<sub>2</sub>Cl<sub>2</sub> as the elution to provide orange solid in 68 % yield. Mp 202—203 °C; <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>): δ 9.78 (s, 1H), 8.36 (s, 2H), 8.24 (d, *J* = 9.0 Hz, 1H), 8.02 (t, *J* = 80 Hz, 1H), 7.74 (d, *J* = 9 Hz, 1H), 7.66 (s, 1H), 7.62 (s, 1H), 7.53 (d, *J* = 9.0 Hz, 2H), 7.32 (d, *J* = 8.5 Hz, 1H), 7.23-7.16 (m, 4H) 3.99 (t, *J* = 7.0 Hz, 2H), 2.62 (t, *J* = 7.0 Hz, 2H), 1.72 (t, *J* = 7.0 Hz, 2H), 1.62 (t, *J* = 7.0 Hz, 2H), 1.42 (t, *J* = 7.0 Hz, 2H), 1.27—1.23 (m, 10H), 0.83 (t, *J* = 7.0 Hz, 6H) ppm; <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>): δ 191.09, 150.00, 149.61, 148.25, 143.10, 141.64, 140.59, 138.85, 137.91, 136.48, 135.47, 133.16, 131.53, 130.76, 129.18, 128.83, 128.40, 128.35, 127.42, 123.59, 123.49, 123.04, 123.02, 120.52, 119.98, 118.77, 117.21, 116.23, 69.50, 47.58, 31.42, 31.27, 30.40, 28.96, 28.71, 26.52, 26.16, 22.53, 22.49, 14.43, 14.31 ppm; <sup>19</sup>F NMR (470 MHz, DMSO-*d*<sub>6</sub>): δ -138.58 (q, *J* = 30.1 Hz, 2F); FAB-HRMS calcd for C<sub>41</sub>H<sub>42</sub>BF<sub>2</sub>N<sub>4</sub>OS<sub>2</sub>(M+H<sup>+</sup>) 719.2861, found 719.2853.

**Synthesis of compound 16.** Compound **16** was synthesized via the typical Suzuki reaction procedure. Further purification was performed by column chromatography, using a mixture of CH<sub>2</sub>Cl<sub>2</sub> and n-hexane (1:2) as the elution to provide yellow solid in 35 % yield. Mp 270–271 °C; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ): δ 9.79 (s, 1H), 8.73 (d, *J* = 2.0 Hz, 1H), 7.61 (s, 1H), 7.42–7.40 (m, 2H), 7.33 (s, 1H), 7.17 (d, *J* = 8.5 Hz, 1H), 7.08 (d, *J* = 8.5 Hz, 1H), 3.95 (t, *J* = 7.0 Hz, 2H), 3.95 (t, *J* = 7.0 Hz, 2H), 1.73–1.65 (m, 2H), 1.59–1.56 (m, 2H), 1.42–1.37 (m, 2 H), 1.29–1.24 (m, 12 H), 0.89–0.79 (m, 6 H),ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ ): δ 190.96, 149.89, 143.64, 142.91, 141.97, 131.43, 130.65, 128.97, 128.26, 125.12, 124.93, 123.93, 123.80, 123.35, 117.31, 116.09, 107.18, 47.51,

31.38, 31.16, 29.39, 28.93, 28.64, 26.45, 26.05, 22.50, 22.41, 14.33, 14.21 ppm; FAB-HRMS calcd for C<sub>29</sub>H<sub>34</sub>BrNOS<sub>2</sub> (M<sup>+</sup>) 555.1265, found 555.1263.

**Synthesis of compound 17.** Compound **17** was synthesized via the typical Suzuki reaction procedure. Further purification was performed by column chromatography, using a mixture of CH<sub>2</sub>Cl<sub>2</sub> and n-hexane (2:1) as the elution to provide orange solid in 80 % yield. Mp 271–272 °C; <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>): δ 9.80 (s, 1H), 8.56 (s, 1H), 8.16 (s, 1H), 8.06–8.02 (m, 2H), 7.75–7.73 (m, 1H), 7.63–7.50 (m, 6H), 7.24–7.19 (m, 2H), 7.12 (d, *J* = 8.5 Hz, 1H), 3.98 (t, *J* = 7.0 Hz, 2H), 2.63 (t, *J* = 7.0 Hz, 2H), 1.71 (t, *J* = 7.0 Hz, 2H), 1.64 (t, *J* = 7.0 Hz, 2H), 1.43 (t, *J* = 7.0 Hz, 2H), 1.27–1.24 (m, 10H), 0.83 (t, *J* = 7.0 Hz, 6H) ppm; <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>): δ 191.07, 150.09, 149.69, 148.49, 143.03, 142.23, 141.73, 141.53, 141.14, 138.86, 136.28, 131.49, 130.77, 129.20, 128.71, 128.37, 126.81, 125.35, 124.02, 123.90, 123.36, 122.54, 120.39, 119.97, 118.71, 117.39, 117.27, 116.17, 47.54, 31.40, 31.22, 30.44, 28.94, 28.81, 26.50, 26.11, 22.48, 22.47, 14.29,14.28 ppm; <sup>19</sup>F NMR (470 MHz, DMSO-*d*<sub>6</sub>): δ -138.74 (q, *J* = 30.1 Hz, 2F); FAB-HRMS calcd for C<sub>41</sub>H<sub>41</sub>BF<sub>2</sub>N<sub>4</sub>OS<sub>2</sub> (M <sup>+</sup>) 718.2783, found 718.2787.

Synthesis of compound 19. To a solution compound 18 (3.0 g, 7.48 mmol) in 50 mL of CHCl<sub>3</sub> was cooled at 0 °C under N<sub>2</sub> atomsphere. POCl<sub>3</sub> (0.84 mL, 8.98 mmol) was added slowly. The reaction mixture was heated at 90 °C for 18 h. After cooling, the reaction solution was extracted with CH<sub>2</sub>Cl<sub>2</sub>. The combined organic layer dried over MgSO<sub>4</sub> and evaporated under reduced pressure. Further purification was performed by column chromatography, using a mixture of CH<sub>2</sub>Cl<sub>2</sub> and n-hexane (1:3) as the elution to provide white solid in 52% yield. Mp 198—199 °C; <sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ ):  $\delta$  9.71 (s, 1H), 8.06 (d, *J* = 9.0 Hz, 2H), 7.53 (d, *J* = 2.5 Hz, 1H), 7.43 (d, *J* = 10 Hz, 1H), 7.30 (d, *J* = 7.5 Hz, 2H), 7.08 (t, *J* = 5.0 Hz, 1H), 6.95—6.90 (m, 2H), 6.20 (d, *J* = 9.0 Hz, 1H), 6.10 (d, *J* = 8.0 Hz, 1H) ppm; <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ ):  $\delta$  190.37, 148.02, 141.78, 140.37, 139.18, 132.91, 131.06, 129.89, 127.71, 127.42, 126.75, 123.95, 119.28, 118.30, 116.49, 115.38, 95.73, 54.94 ppm; <sup>19</sup>F NMR

(470 MHz, DMSO-*d*<sub>6</sub>); FAB-HRMS calcd for C<sub>19</sub>H<sub>12</sub>INOS (M<sup>+</sup>) 428.9684, found 428.9679.

Synthesis of compound 20. Under N<sub>2</sub> atomsphere, to a solution compound 19 (2.0 g, 4.66 mmol) in 30 mL of CHCl<sub>3</sub>, was added *N*-bromosuccinimide (1.0 g, 5.59 mmol). The reaction mixture was heated at 60 °C for 4 h. The reaction solution was extracted with CH<sub>2</sub>Cl<sub>2</sub>. The combined organic layer dried over MgSO<sub>4</sub> and evaporated under reduced pressure. Further purification was performed by column chromatography, using a mixture of CH<sub>2</sub>Cl<sub>2</sub> and n-hexane (1:5) as the elution to provide white solid in 64% yield. Mp 230—231 °C; <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  9.72 (s, 1H), 8.06 (d, *J* = 8.0 Hz, 2H), 7.53 (s, 1H), 7.44 (d, *J* = 8.5 Hz, 1H), 7.29 (d, *J* = 8.0 Hz, 3H), 7.10 (d, *J* = 8.5 Hz, 1H), 6.20 (d, *J* = 9.0 Hz, 1H), 6.00 (d, *J* = 9.0 Hz, 1H) ppm; <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  190.80, 147.98, 141.72, 140.95, 139.31, 133.23, 131.68, 130.64, 130.47, 128.94, 127.95, 121.33, 119.01, 118.42, 115.98, 115.67, 96.48 ppm; FAB-HRMS calcd for C<sub>19</sub>H<sub>11</sub>BrINOS (M <sup>+</sup>) 508.8789, found 508.8781.

**Synthesis of compound 21.** Compound **21** was synthesized via the typical Suzuki reaction procedure. Further purification was performed by column chromatography, using a mixture of CH<sub>2</sub>Cl<sub>2</sub> and n-hexane (3:1) as the elution to provide yellow solid in 80% yield. Mp 263—264 °C; <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>): δ 9.72 (s, 1H), 8.58 (s, 1H), 8.46 (d, *J* = 2.0 Hz, 1H), 8.40 (s, 1H), 8.10 (d, *J* = 8.5 Hz, 2H), 8.05 (t, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 8.0 Hz, 3H), 7.56 (t, *J* = 2.0 Hz, 2H), 7.46 (d, *J* = 8.5 Hz, 1H), 7.34 (s, 1H), 7.23 (t, *J* = 7.0 Hz, 1H), 7.11 (d, *J* = 7.0 Hz, 1H), 6.26 (d, *J* = 8.5 Hz, 1H), 6.07 (d, *J* = 8.5 Hz, 1H) ppm; <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>): δ 190.80, 149.73, 148.93, 148.20, 141.92, 141.73, 139.61, 138.88, 136.12, 135.87, 131.71, 130.89, 130.61, 130.45, 130.21, 129.80, 128.96, 127.99, 121.33, 120.37, 119.93, 119.31, 118.99, 118.80, 118.24, 117.20, 116.00, 115.65 ppm; <sup>19</sup>F NMR (470 MHz, DMSO-*d*<sub>6</sub>): δ -138.54 (q, *J* = 30.1 Hz, 2F); FAB-HRMS calcd for C<sub>31</sub>H<sub>18</sub>BBrF<sub>2</sub>N<sub>4</sub>OS (M<sup>+</sup>) 624.0446, found 624.0440.

Synthesis of compound 22. Compound 21 (0.7 g, 1.12 mmol), bis(pinacolato)diboron (0.34 g, 1.3

mmol), KOAc (0.33 g, 3.36 mmol), and Pd(PPh<sub>3</sub>)Cl<sub>2</sub> (0.039 g, 0.056 mmol) in 11 mL of anhydrous toluene under nitrogen was heated at 120 °C for 18 h. The solution was cooled and then 20 mL of dry toluene was added. The insoluble residue was filtered off and the filtrate was concentrated *in vacuo* to afford the crude product. Further purification was performed by column chromatography, using CH<sub>2</sub>Cl<sub>2</sub> as the elution to provide yellow solid in 49% yield. Mp 266—267 °C; <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>): δ 9.72 (s, 1H), 8.61 (s, 1H), 8.47 (d, *J* = 2.0 Hz, 1H), 8.41 (s, 1H), 8.12 (d, *J* = 8.0 Hz, 2H), 8.05 (t, *J* = 7.5 Hz, 1H), 7.64 (d, *J* = 8.0 Hz, 2H), 7.56 (t, *J* = 2.0 Hz, 2H), 7.45 (d, *J* = 8.5 Hz, 1H), 7.39 (s, 1H), 7.29 (s, 1H), 7.24 (t, *J* = 7.0 Hz, 1H), 7.12 (d, *J* = 7.0 Hz, 1H), 6.26 (d, *J* = 8.5 Hz, 1H), 6.14 (d, *J* = 8.5 Hz, 1H), 1.29 (s, 12H) ppm; <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>): δ 190.19, 149.43, 148.60, 147.67, 144.49, 141.12, 139.40, 139.05, 138.31, 135.62, 135.35, 134.05, 132.44, 131.48, 131.24, 129.61, 129.20, 127.33, 127.06, 119.92, 119.55, 119.48, 118.19, 117.78, 116.63, 115.94, 115.73, 83.74, 68.87, 24.62 ppm; <sup>19</sup>F NMR (470 MHz, DMSO-*d*<sub>6</sub>): δ -137.59 (q, *J* = 30.1 Hz, 2F); FAB-HRMS calcd for  $C_{37}H_{30}B_2F_2N_4O_3S(M^+)$  670.2193, found 670.2201.

**Synthesis of compound 23.** Compound **23** was synthesized via the typical Suzuki reaction procedure. Further purification was performed by column chromatography, using a mixture of CH<sub>2</sub>Cl<sub>2</sub> and n-hexane (2:1) as the elution to provide yellow solid in 71% yield. Mp 267–268 °C; <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>): δ 9.74 (s, 1H), 8.58 (s, 1H), 8.45–8.43 (m, 1H), 8.38 (s, 1H), 8.10–8.03 (m, 3H), 7.65–7.62 (m, 3H), 7.58–7.56 (m, 2H), 7.46–7.44 (m, 1H), 7.36 (s, 1H), 7.25–7.22 (m, 2H), 7.13–7.11 (m, 1H), 6.29 (d, *J* = 8.5 Hz, 1H), 6.19 (d, *J* = 8.5 Hz, 1H), 2.57 (t, *J* = 8.5 Hz, 2H), 1.59 (t, *J* = 8.5 Hz, 2H), 1.33–1.25 (m, 6H), 0.87 (t, *J* = 8.5 Hz, 3H) ppm; <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>): δ 190.13, 147.62, 141.45, 141.13, 139.44, 139.07, 138.32, 135.34, 131.31, 131.22, 129.82, 129.23, 127.36, 124.55, 124.39, 122.92, 119.50, 118.94, 116.91, 116.63, 115.56, 106.84, 68.87, 30.92, 29.05, 28.93, 28.19, 21.92, 13.81 ppm; <sup>19</sup>F NMR (470 MHz, DMSO-*d*<sub>6</sub>): δ -137.59 (q, *J* = 30.1 Hz, 2F); FAB-HRMS calcd for C<sub>41</sub>H<sub>32</sub>BBrF<sub>2</sub>N<sub>4</sub>OS<sub>2</sub> (M<sup>+</sup>) 788.1262, found 788.1254.

S15

Synthesis of compound 24. Compound 24 was synthesized via the typical Suzuki reaction procedure. Further purification was performed by column chromatography, using a mixture of CH<sub>2</sub>Cl<sub>2</sub> and n-hexane (3:1) as the elution to provide orange solid in 72% yield. Mp 267—268 °C; <sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ ): δ 9.74 (s, 1H), 8.57 (s, 1H), 8.44 (d, *J* = 2.0 Hz, 1H), 8.42—8.35 (m, 3H), 8.20 (d, *J* = 2.0 Hz, 1H), 8.09 (d, *J* = 8.5 Hz, 2H), 8.04—8.00 (m, 2H), 7.65—7.62 (m, 3H), 7.57—7.44 (m, 6H), 7.22—7.15 (m, 2H), 7.15 (s, 1H), 7.06—7.04 (m, 1H), 6.31—6.26 (m, 2H), 2.60 (t, *J* = 8.5 Hz, 2H), 1.61 (t, *J* = 8.5 Hz, 2H), 1.29—1.26 (m, 6H), 0.84 (t, *J* = 8.5 Hz, 3H) ppm; <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ ): δ 190.09, 149.41, 149.24, 148.59, 147.89, 147.74, 141.52, 141.10, 140.99, 140.24, 139.39, 139.01, 138.30, 138.28, 137.39, 135.82, 135.67, 135.33, 135.05, 132.71, 131.35, 131.27, 129.82, 129.23, 129.07, 127.94, 127.78, 127.36, 127.09, 125.35, 122.55, 119.93, 119.47, 119.13, 119.06, 118.16, 118.08, 116.67, 116.60, 115.57, 69.16, 68.85, 30.94, 29.90, 28.46, 28.31, 21.96, 13.83 ppm; <sup>19</sup>F NMR (470 MHz, DMSO- $d_6$ ): δ -137.51 (q, *J* = 30.1 Hz, 4F); FAB-HRMS calcd for C<sub>53</sub>H<sub>39</sub>B<sub>3</sub>F<sub>4</sub>N<sub>7</sub>OS<sub>2</sub> (M<sup>+</sup>) 951.2780, found 951.2768.

**Synthesis of compound 25.** Compound **25** was synthesized via the typical Suzuki reaction procedure. Further purification was performed by column chromatography, using a mixture of CH<sub>2</sub>Cl<sub>2</sub> and n-hexane (3:1) as the elution to provide orange solid in 92% yield. Mp 262—263 °C; <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>): δ 9.74 (s, 1H), 8.57 (s, 1H), 8.44 (d, *J* = 2.0 Hz, 1H), 8.37—8.33 (m, 2H), 8.15 (s, 1H), 8.11—8.01 (m, 5H), 7.63 (d, *J* = 8.5 Hz, 3H), 7.57—7.53 (m, 4H), 7.46—7.42 (m, 3H), 7.24—7.20 (m, 3H), 6.29 (d, *J* = 8.5 Hz, 1H), 6.21 (d, *J* = 8.5 Hz, 1H), 2.61 (t, *J* = 8.5 Hz, 2H), 1.63 (t, *J* = 8.5 Hz, 2H), 1.32—1.25 (m, 6H), 0.83 (t, *J* = 8.5 Hz, 3H) ppm; <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>): δ 190.10, 149.42, 149.33, 148.60, 148.10, 147.62, 141.70, 141.42, 140.85, 140.56, 139.45, 139.04, 138.29, 135.84, 135.64, 135.34, 131.29, 131.24, 129.99, 129.79, 129.22, 129.11, 127.36, 124.53, 123.08, 122.06, 119.93, 119.86, 119.47, 118.97, 118.05, 116.90, 116.67, 115.55, 69.06, 68.86, 30.89, 29.96, 28.41, 28.26, 21.92, 13.75 ppm; <sup>19</sup>F NMR (470 MHz, DMSO-*d*<sub>6</sub>): δ -137.66 (q, *J* = 30.1 Hz, 4F);

FAB-HRMS calcd for  $C_{53}H_{39}B_2F_4N_7OS_2$  (M<sup>+</sup>) 951.2780, found 951.2780.

**Synthesis of compound 26.** Compound **26** was synthesized via the typical Suzuki reaction procedure. Further purification was performed by column chromatography, using a mixture of CH<sub>2</sub>Cl<sub>2</sub> and n-hexane (2:1) as the elution to provide yellow solid in 84% yield. Mp 258—259 °C; <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>): δ 9.72 (s, 1H), 8.59 (s, 1H), 8.45 (d, *J* = 9.0 Hz, 1H), 8.40 (s, 1H), 8.10 (d, *J* = 8.5 Hz, 2H), 8.05 (t, *J* = 8.5 Hz, 1H), 7.64—7.55 (m, 5H), 7.45 (d, *J* = 8.5 Hz, 1H), 7.23 (t, *J* = 7.0 Hz, 1H), 7.11 (d, *J* = 7.5 Hz, 1H), 6.98—6.91 (m, 2H), 6.28 (d, *J* = 8.5 Hz, 1H), 6.18 (d, *J* = 8.5 Hz, 1H) ppm; <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>): δ 190.80, 158.84, 149.73, 148.91, 148.68, 142.41, 141.71, 139.90, 139.64, 138.87, 135.92, 135.83, 131.81, 130.32, 129.68, 128.13, 127.55, 127.22, 124.38, 123.15, 121.84, 120.36, 119.92, 119.69, 118.82, 118.74, 117.00, 115.84 ppm; <sup>19</sup>F NMR (470 MHz, DMSO-*d*<sub>6</sub>): δ -137.26 (q, *J* = 30.1 Hz, 2F); FAB-HRMS calcd for C<sub>31</sub>H<sub>19</sub>BF<sub>2</sub>N<sub>4</sub>OS (M<sup>+</sup>) 544.1341, found 544.1337.

**Synthesis of compound K1.** Compound **K1** was obtained according to the standard Knoevenagel condensation reaction. Further purification was performed by column chromatography, using a mixture of CH<sub>2</sub>Cl<sub>2</sub> and acetic acid (19/1) as the elution to provide black solid in 72 % yield. Mp 238–239 °C; <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  8.42 (s, 1H), 8.32—8.26 (2H), 8.14 (s, 1H), 7.98 (t, *J* = 8 Hz, 1H), 7.90 (d, *J* = 7 Hz, 1H), 7.29 (t, *J* = 8.7 Hz, 1H), 7.80 (s, 1H), 7.55 (s, 2H), 7.48 (d *J* = 8.7 Hz, 2H), 7.18—7.10 (m, 3H) ppm; <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  164.16, 152.69, 149.70, 148.65, 148.36, 143.17, 141.45, 139.07, 138.74, 134.70, 132.04, 130.31, 129.56, 127.33, 126.32, 125.16, 123.58, 123.17, 120.14, 119.81, 118.88, 117.34, 117.30, 116.87, 116.24, 68.90, 47.47, 31.24, 26.47, 22.53, 14.30 ppm; <sup>19</sup>F NMR (470 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  -137.06 (q, *J* = 30.1 Hz, 2F); FAB-HRMS calcd for C<sub>34</sub>H<sub>28</sub>BF<sub>2</sub>N<sub>5</sub>O<sub>2</sub>S (M<sup>+</sup>) 619.2025, found 619.2041.

**Synthesis of compound K2.** Compound **K2** was obtained according to the standard Knoevenagel condensation reaction. Further purification was performed by column chromatography, using a mixture of CH<sub>2</sub>Cl<sub>2</sub> and acetic acid (19/1) as the elution to provide black solid in 64 % yield. Mp

280–281 °C; <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>): δ 8.45 (d, *J* = 14.0 Hz, 2H), 8.34–8.32 (m, 2H), 8.02– 7.96 (m, 2H), 7.71 (s, 1H), 7.70–7.60 (m, 4H), 7.59–7.51 (m, 2H), 7.20–7.11 (m, 3H), 3.95 (t, *J* = 7.0 Hz, 2H), 1.72 (t, *J* = 7 Hz, 2H), 1.42 (t, *J* = 7.0 Hz, 2H), 1.29–1.25 (m, 4H), 0.83 (t, *J* = 7 Hz, 3H) ppm; <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>): δ 164.03, 149.72, 148.57, 148.31, 145.66, 144.27, 144.09, 141.70, 141.43, 139.18, 138.73, 134.62, 134.49, 129.97, 129.69, 127.62, 127.35, 126.47, 126.11, 125.15, 124.84, 124.32, 124.28, 120.15, 119.82, 118.91, 117.33, 117.14, 116.94, 116.83, 68.85, 47.26, 31.27, 26.54, 26.22, 22.54, 14.31 ppm; <sup>19</sup>F NMR (470 MHz, DMSO-*d*<sub>6</sub>): δ -137.13 (q, *J* = 30.1 Hz, 2F); FAB-HRMS calcd for  $C_{38}H_{30}BF_2N_5O_2S_2(M^+)$  701.1902, found 701.1917.

**Synthesis of compound K3.** Compound **K3** was obtained according to the standard Knoevenagel condensation reaction. Further purification was performed by column chromatography, using a mixture of CH<sub>2</sub>Cl<sub>2</sub> and acetic acid (19/1) as the elution to provide black solid in 78 % yield. Mp 278–279 °C; <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  8.40 (s 1H), 8.37 (s, 1H), 8.29 (q, *J* = 2 Hz, 1H), 8.03 (t, *J* = 7.5 Hz, 2H), 7.86 (d, *J* = 8.0 Hz, 1H),7.79 (s, 1H), 7.70 (s, 1H), 7.56-7.53 (m, 5H), 7.21 (t, *J* = 6.5 Hz, 1H), 7.16 (t, *J* = 8.5 Hz, 1H), 7.11 (t, *J* = 9.5 Hz, 1H) 3.96 (t, *J* = 7 Hz, 2H), 1.72 (t, *J* = 7 Hz, 2H), 1.42 (t, *J* = 7 Hz, 2H), 1.29—1.23 (m, 4H), 0.85 (t, *J* = 7 Hz, 3H) ppm; <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>): δ 163.80, 149.56, 148.23, 147.86, 143.00, 142.66, 142.28, 141.63, 138.84, 137.86, 136.47, 136.05, 134.52, 133.15, 131.42, 129.09, 128.95, 126.92, 125.47, 125.24, 124.15, 123.59, 123.00, 122.93, 120.52, 119.95, 118.95, 118.71, 118.34, 117.17, 116.24, 69.57, 47.42, 31.25, 26.50, 26.15, 22.54, 14.31 ppm; <sup>19</sup>F NMR (470 MHz, DMSO-*d*<sub>6</sub>): δ -137.17(q, *J* = 30.1 Hz, 2F); TOF-HRMS calcd for C<sub>38</sub>H<sub>29</sub>BF<sub>2</sub>N<sub>5</sub>O<sub>2</sub>S<sub>2</sub> (M-H<sup>+</sup>) 700.1824, found 700.1829.

Synthesis of compound K4. Compound K4 was obtained according to the standard Knoevenagel condensation reaction. Further purification was performed by column chromatography, using a mixture of  $CH_2Cl_2$  and acetic acid (19/1) as the elution to provide black solid in 81 % yield. Mp 275–276 °C; <sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ ):  $\delta$  8.37 (s, 1H), 8.17 (s. 1H), 8.14 (s, 1H), 8.06–8.04 (m,

2H), 7.92 (d, *J* = 1.1 Hz, 1H),7.83 (s, 1H), 7.58—7.49 (m, 5H), 7.23—7.18 (m, 2H), 7.11 (d, *J* = 7.2 Hz, 1H), 3.97 (t, *J* = 7 Hz, 2H), 2.61 (t, *J* = 7 Hz, 2H), 1.70 (t, *J* = 7 Hz, 2H), 1.62 (t, *J* = 7 Hz, 2H), 1.42 (t, *J* = 7 Hz, 2H), 1.30—1.24 (m, 10H), 0.85—0.80 (t, *J* = 7 Hz, 6H) ppm; <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>): δ 164.10, 149.66, 148.56, 148.43, 142.66, 142.12, 141.71, 141.45, 141.11, 138.85, 136.27, 131.94, 130.27, 129.57, 129.21, 126.79, 126.34, 125.35, 124.03, 123.44, 122.95, 122.53, 120.38, 119.96, 118.68, 117.45, 117.25, 116.23, 47.47, 31.40, 31.24, 30.45, 28.94, 28.82, 26.49, 26.12, 22.53, 22.50, 14.35, 14.30 ppm; <sup>19</sup>F NMR (470 MHz, DMSO-*d*<sub>6</sub>): δ -137.39 (q, *J* = 30.1 Hz, 2F); TOF-HRMS calcd for  $C_{44}H_{41}BF_2N_5O_2S_2$  (M-H<sup>+</sup>) 784.2763, found 784.2755.

**Synthesis of compound K5.** Compound **K5** was obtained according to the standard Knoevenagel condensation reaction. Further purification was performed by column chromatography, using a mixture of CH<sub>2</sub>Cl<sub>2</sub> and acetic acid (19/1) as the elution to provide black solid in 79 % yield. Mp 258–259 °C; <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  8.47 (s, 1H), 8.36 (t, *J* = 8.5 Hz, 1H), 8.24 (t, *J* = 8.5 Hz, 1H), 8.10–8.02 (m, 2H), 7.90 (s, 1H), 7.81 (s, 1H), 7.66 (s, 1H), 7.54 (d, *J* = 10.5 Hz, 2H), 7.31 (t, *J* = 8.5 Hz, 1H), 7.24–7.16 (m, 4H), 3.98(t, *J* = 8.5 Hz, 2H), 2.63 (t, *J* = 8.5 Hz, 2H), 1.72 (t, *J* = 8.5 Hz, 2H), 1.62 (t, *J* = 8.5 Hz, 2H), 1.42 (t, *J* = 8.5 Hz, 2H), 1.28–1.24 (m, 10H), 0.86–0.81 (m, 6H) ppm; <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  162.52, 159.34, 157.76, 151.12, 148.82, 148.25, 147.83, 147.37, 146.51, 144.63, 142.77, 142.17, 141.56, 140.59, 138.81, 137.89, 136.45, 135.46, 133.27, 133.12, 131.98, 129.59, 129.50, 128.79, 128.29, 127.39, 126.41, 123.15, 120.48, 118.09, 52.88, 47.52, 31.37, 31.23, 30.35, 29.91, 28.72, 26.51, 26.13, 22.47, 14.35, 14.24; <sup>19</sup>F NMR (470 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  - 137.13 (q, *J* = 30.1 Hz, 2F); TOF-HRMS calcd for C<sub>44</sub>H<sub>41</sub>BF<sub>2</sub>N<sub>5</sub>O<sub>2</sub>S<sub>2</sub> (M-H<sup>+</sup>) 784.2763, found 784.2765. **Synthesis of compound K6**. Compound **K6** was obtained according to the standard Knoevenagel condensation reaction. Further purification was performed by column chromatography, using a mixture of CH<sub>2</sub>Cl<sub>2</sub> and acetic acid (19/1) as the elution to provide black solid in 62 % yield. Mp

256–257 °C; <sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ ): δ 8.58 (s, 1H), 8.44 (d, J = 10.5 Hz, 1H), 8.39–8.36 (m,

3H), 8.20 (d, J = 12.0 Hz, 1H), 8.12—7.99 (m, 5H), 7.23 (s, 1H), 7.65—7.44 (m, 8H), 7.24—7.17 (m, 3H), 7.04 (d, J = 10.5 Hz, 1H), 6.24—6.21 (m, 2H), 2.58 (t, J = 8.5 Hz, 2H), 1.60 (t, J = 8.5 Hz, 2H), 1.27—1.24 (m, 6H), 0.84 (t, J = 8.5 Hz, 3H) ppm; <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ ):  $\delta$  162.63, 149.66, 149.48, 148.84, 148.10, 146.33, 141.80, 141.62, 141.52, 140.64,140.55, 139.50, 139.46, 138.81, 138.76, 137.68, 136.08, 136.05, 135.79, 135.34, 133.01, 131.74, 131.64, 131.57, 129.70, 129.35, 129.21, 128.29, 128.20, 127.85, 127.49, 127.42, 126.72, 122.86, 120.37, 120.29, 119.87, 119.37, 119.27, 119.18, 119.15, 118.72, 118.64, 117.09, 116.90, 115.98, 69.44, 69.14, 31.42, 30.37, 29.09, 28.74, 22.49, 14.39; <sup>19</sup>F NMR (470 MHz, DMSO- $d_6$ ):  $\delta$  -137.07 (q, J = 30.1 Hz, 2F); TOF-HRMS calcd for C<sub>56</sub>H<sub>39</sub>B<sub>2</sub>F4N<sub>8</sub>O<sub>2</sub>S<sub>2</sub> (M-H<sup>+</sup>) 1017.2760, found 1017.2761.

Synthesis of compound K7. Compound K7 was obtained according to the standard Knoevenagel condensation reaction. Further purification was performed by column chromatography, using a mixture of CH<sub>2</sub>Cl<sub>2</sub> and acetic acid (19/1) as the elution to provide black solid in 65 % yield .Mp 250–251 °C; <sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ ): δ 8.60 (s, 1H), 8.46 (d, *J* = 10.5 Hz, 1H), 8.40—8.36 (m, 3H), 8.16—7.98 (m, 7H), 7.75 (s, 1H), 7.66—7.62 (m, 3H), 7.58—7.53 (m, 4H), 7.48—7.46 (m, 2H), 7.25—7.20 (m, 3H), 6.23—6.17 (m, 2H), 2.60 (t, *J* = 8.5 Hz, 2H), 1.62 (t, *J* = 8.5 Hz, 2H), 1.31—1.24 (m, 6H), 0.83 (t, *J* = 8.5 Hz, 3H) ppm; <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ ): δ 163.59, 151.03, 149.74, 149.65, 148.92, 148.43, 148.36, 148.30, 142.17, 142.11, 141.82, 141.71, 141.25, 141.12, 139.67, 139.57, 139.42, 138.86, 136.27, 136.07, 136.03, 135.88, 131.76, 131.67, 130.46, 130.33, 129.93, 129.77, 129.57, 129.45, 129.33, 127.60, 126.79, 124.94, 123.53, 122.48, 122.45, 120.36, 119.93, 119.61, 119.32, 119.12, 118.82, 118.68, 117.24, 117.18, 116.05, 115.97, 31.39, 30.47, 29.94, 28.80, 22.47, 14.35; <sup>19</sup>F NMR (470 MHz, DMSO- $d_6$ ): δ -137.24 (q, *J* = 30.1 Hz, 4F); TOF-HRMS calcd for C<sub>56</sub>H<sub>39</sub>B<sub>2</sub>F4N<sub>8</sub>O<sub>2</sub>S<sub>2</sub> (M-H<sup>+</sup>) 1017.2760, found 1017.2766.

**Synthesis of compound K8.** Compound **K8** was obtained according to the standard Knoevenagel condensation reaction. Further purification was performed by column chromatography, using a

S20

mixture of CH<sub>2</sub>Cl<sub>2</sub> and acetic acid (19/1) as the elution to provide black solid in 75 % yield. Mp 256–257 °C; <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  8.58 (s, 1H), 8.46–8.43 (m, 2H), 8.40–8.02 (m, 4H), 7.75 (s, 1H), 7.66–7.35 (m, 6H), 7.25 (s, 1H), 7.21 (t, *J* = 8.5 Hz, 1H), 7.10 (d, *J* = 2.5 Hz, 1H), 6.22 (d, *J* = 11.0 Hz, 1H), 6.07 (d, *J* = 2.5 Hz, 1H) ppm; <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  164.14, 152.36, 149.68, 148.86, 147.47, 142.21, 141.72, 141.31, 139.66, 138.89, 135.98, 135.86, 131.90, 131.71, 129.72, 129.35, 128.69, 128.17, 127.59, 127.25, 126.37, 124.41, 120.33, 119.92, 119.59, 118.85, 118.51, 117.18, 116.96, 115.87, 108.57, 100.72, 79.65, 69.67 ppm; <sup>19</sup>F NMR (470 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  -137.07 (q, *J* = 30.1 Hz, 2F); TOF-HRMS calcd for C<sub>34</sub>H<sub>19</sub>BF<sub>2</sub>N<sub>5</sub>O<sub>2</sub>S (M-H<sup>+</sup>) 610.1321, found 610.1326.

**Synthesis of compound P3.** Compound **P3** was synthesized via the typical Suzuki reaction procedure. Further purification was performed by column chromatography, using a mixture of CH<sub>2</sub>Cl<sub>2</sub> and n-hexane (2:1) as the elution to provide yellow solid in 72 % yield. Mp 197—198 °C; <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>): δ 8.36 (s, 1H), 8.17 (s, 1H), 7.94 (dd, J = 6.4. 9.2 Hz, 1H), 7.71—7.67 (m, 1H), 7.61 (d, *J* = 9.0 Hz, 1H), 7.56—7.52 (m, 3H), 7.46 (t, *J* = 7.5 Hz, 2H), 7.40—7.37 (m, 1H), 6.91 (t, *J* = 7.5 Hz, 1H) ppm; <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>): δ 150.54, 149.14, 139.39, 138.48, 138.11, 135.61, 129.51, 129.18, 128.67, 126.41, 120.51, 120.33, 119.06, 115.29, 69.89 ppm; <sup>19</sup>F NMR (470 MHz, DMSO-*d*<sub>6</sub>): δ -137.59 (q, *J* = 30.1 Hz, 2F); FAB-HRMS calcd for C<sub>18</sub>H<sub>12</sub>BF<sub>2</sub>N<sub>3</sub> (M <sup>+</sup>) 319.1092, found 319.1087.

**Synthesis of compound R1.** Compound **R1** was obtained according to the standard Knoevenagel condensation reaction. Further purification was performed by column chromatography, using a mixture of CH<sub>2</sub>Cl<sub>2</sub> and acetic acid (19/1) as the elution to provide black solid in 59% yield. Mp 145–147 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.10 (s, 1H), 7.92 (dd, 1H, J = 2.0, 8.8 Hz), 7.69 (d, 1H, J = 2.0 Hz), 7.33-7.40 (m, 3H), 7.25-7.29 (m, 5H), 7.10-7.13 (m, 6H), 7.03 (t, 2H, J = 7.2 Hz), 6.86-6.91 (m, 2H), 3.90 (t, 2H, J = 7.2 Hz), 1.80-1.86 (m, 2H), 1.45-1.47 (m, 2H), 1.33-1.34 (m, 4H), 0.89 (t, 3H, J = 2.2 Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) : δ 168.7, 154.5, 149.9, 147.6, 147.2, 141.3, 136.5, 133.2, 131.9,

130.4, 129.3, 127.1, 125.7, 125.3, 125.3, 124.5, 124.2, 123.8, 123.5, 123.0, 116.0, 114.8, 97.5, 48.2, 31.4, 26.6, 26.5, 22.6, 14.0; FAB-HRMS calcd for C<sub>40</sub>H<sub>36</sub>O<sub>2</sub>N<sub>3</sub>S (M+H<sup>+</sup>) 622.2528, found 622.2527.





Figure S1. Absorption spectra of (a) K1, (b) K2, (c) K3, (d) K4, (e) K5, (f) K6, (g) K7, (h) K8, (i) R1, and (j) R2 in different solvents.



Figure S2. Absorption spectra of (a) K2, (b) K4, (c) K5, (d) K6, (e) K7, (f) K8, and (g) R1 in THF solutions before and after the addition of TEA.



Figure S3. Cyclic voltammograms of the K and R dyes recorded in THF solutions.



**Figure S4.** Frontier orbitals of the **K** and **R** dyes optimized with DFT at the B3LYP/6-31G (d,p) level.



**Figure S5.** Frontier orbitals of the d **K** and **R** yes optimized with DFT at the B3PW91/6-31G (d,p) level.



Figure S6. Frontier orbitals of the K and R dyes optimized with Hartree-Fock 6-31G (d,p) basis set.



**Figure S7.** Calculated gas-phase absorption spectra of (a) dyes **K1– K5** and (b) dyes **K6– K8**, **R1** and **R2** by using DFT at the B3LYP/6-31G (d,p) level.



**Figure S8.** Calculated gas-phase absorption spectra of (a) dyes **K1– K5** and (b) dyes **K6– K8**, **R1** and **R2** by using DFT at the B3PW91/6-31G(d,p) level.



**Figure S9.** Calculated gas-phase absorption spectra of (a) dyes **K1– K5** and (b) dyes **K6– K8**, **R1** and **R2** by using 6-31G (d,p) basis set at Hartree-Fock level.



Figure S10. (a) The IPCE and (b) current-voltage plots for the DSSC made with dye K1 with or without DCA.



**Figure S11.** The electrochemical impedance spectra of (a) Nyquist plots, and (b) Bode phase plots for the DSSC based on **K** and **R** with DCA.



Figure S12. Absorption spectra of (a) K2, (b) K3, (c) K5, (d) K6, (e) K7, and (f) K8 absorbed on nanocrystalline  $TiO_2$  films before and after light irradiation (30 min).

| Table S1 Calculated TDDFT excitation energies (E), oscillator strengths (f), MO compositions and |
|--------------------------------------------------------------------------------------------------|
| characters, are compared with experimental absorptions based on DFT at the B3LYP/6-31G (d,p      |
| level.                                                                                           |

| Dye | nª | <i>E</i> (ev, nm) | f    | Composition       | Character | exptl (ev, nm) |
|-----|----|-------------------|------|-------------------|-----------|----------------|
| K1  | 1  | 2.47 (503)        | 0.39 | 93% HOMO→LUMO     | СТ        | 2.66 (467)     |
|     | 3  | 2.97 (418)        | 0.37 | 89% HOMO→LUMO+1   | π-π* (1)  | 3.78 (328)     |
|     | 5  | 3.28 (378)        | 0.10 | 92% HOMO-1→LUMO+1 | π-π* (2)  | 4.41 (281)     |
|     | 6  | 3.49 (355)        | 0.20 | 43% HOMO→LUMO+3   | π-π* (3)  |                |
|     | 8  | 3.67 (338)        | 0.22 | 36% HOMO-1→LUMO+3 | π-π* (4)  |                |
|     | 9  | 3.77 (329)        | 0.50 | 46% HOMO-1→LUMO+4 | π-π* (5)  |                |
| К2  | 1  | 2.24 (554)        | 0.47 | 96% HOMO→LUMO     | СТ        | 2.66 (467)     |
|     | 3  | 2.86 (433)        | 0.37 | 93% HOMO→LUMO+1   | π-π* (1)  | 3.70 (335)     |
|     | 5  | 3.22 (386)        | 0.32 | 86% HOMO-1→LUMO+1 | π-π* (2)  | 4.41 (281)     |
|     | 6  | 3.26 (380)        | 0.64 | 73% HOMO-2→LUMO   | π-π* (3)  |                |
|     | 9  | 3.65 (340)        | 0.39 | 29% HOMO→LUMO+4   | π-π* (4)  |                |
| КЗ  | 1  | 2.40 (516)        | 0.70 | 90% HOMO→LUMO     | СТ        | 2.58 (481)     |
|     | 3  | 2.82 (439)        | 0.60 | 83% HOMO→LUMO+1   | π-π* (1)  | 4.05 (306)     |
|     | 5  | 3.14 (395)        | 0.13 | 92% HOMO-1→LUMO+1 | π-π* (2)  |                |
|     | 6  | 3.28 (377)        | 0.31 | 73% HOMO→LUMO+3   | π-π* (3)  |                |
|     | 9  | 3.61 (343)        | 0.12 | 57% HOMO-1→LUMO+3 | π-π* (4)  |                |
| К4  | 1  | 2.42 (513)        | 0.60 | 91% HOMO→LUMO     | СТ        | 2.67 (465)     |
|     | 3  | 2.85 (434)        | 0.51 | 91% HOMO→LUMO+1   | π-π* (1)  | 3.88 (320)     |
|     | 5  | 3.18 (390)        | 0.13 | 91% HOMO-1→LUMO+1 | π-π* (2)  |                |
|     | 6  | 3.31 (375)        | 0.31 | 59% HOMO→LUMO+3   | π-π* (3)  |                |
|     | 9  | 3.61 (344)        | 0.13 | 57% HOMO-1→LUMO+3 | π-π* (4)  |                |
| К5  | 1  | 2.43 (510)        | 0.56 | 89% HOMO→LUMO     | СТ        | 2.61 (475)     |
|     | 3  | 2.85 (434)        | 0.63 | 92% HOMO→LUMO+1   | π-π* (1)  | 3.82 (325)     |
|     | 6  | 3.34 (371)        | 0.41 | 68% HOMO→LUMO+3   | π-π* (2)  |                |
|     | 9  | 3.62 (343)        | 0.11 | 37% HOMO-1→LUMO+3 | π-π* (3)  |                |
| K6  | 1  | 2.45 (507)        | 0.49 | 90% HOMO→LUMO     | СТ        | 2.70 (460)     |
|     | 3  | 2.74 (453)        | 0.13 | 80% HOMO-2→LUMO   | π-π* (1)  | 3.76 (330)     |
|     | 4  | 2.83 (439)        | 0.72 | 56% HOMO-1→LUMO+1 | π-π* (2)  |                |
|     | 6  | 2.89 (429)        | 0.43 | 61% HOMO→LUMO+2   | π-π* (3)  |                |
| K7  | 1  | 2.44 (508)        | 0.55 | 90% HOMO→LUMO     | СТ        | 2.70 (459)     |
|     | 3  | 2.76 (449)        | 0.11 | 82% HOMO-2→LUMO   | π-π* (1)  | 3.73 (332)     |
|     | 4  | 2.83 (439)        | 0.56 | 52% HOMO-1→LUMO+1 | π-π* (2)  |                |
|     | 6  | 2.89 (429)        | 0.43 | 67% HOMO→LUMO+2   | π-π* (3)  |                |
| К8  | 1  | 2.64 (469)        | 0.31 | 92% HOMO→LUMO     | СТ        | 2.71(458)      |

| 4  | 3.08 (402) | 0.56 | 90% HOMO-1→LUMO+1 | π-π* (1) | 3.82(325)  |
|----|------------|------|-------------------|----------|------------|
| 8  | 3.56 (348) | 0.34 | 42% HOMO-2→LUMO   | π-π* (2) |            |
| 9  | 3.62 (342) | 0.27 | 70% HOMO-1→LUMO+3 | π-π* (3) |            |
| 10 | 3.70 (335) | 0.17 | 64% HOMO→LUMO+4   | π-π* (4) |            |
| 1  | 2.34 (530) | 0.27 | 97% HOMO→LUMO     | СТ       | 2.76 (450) |
| 2  | 2.68 (462) | 0.12 | 91% HOMO-1→LUMO   | π-π* (1) | 3.94 (315) |
| 3  | 3.43 (361) | 0.50 | 57% HOMO→LUMO+1   | π-π* (2) |            |
| 4  | 3.59 (345) | 0.15 | 54% HOMO-2→LUMO   | π-π* (3) |            |
| 5  | 3.71 (334) | 0.47 | 50% HOMO-1→LUMO+1 | π-π* (4) |            |
| 7  | 3.88 (320) | 0.10 | 22% HOMO→LUMO+2   | π-π* (5) |            |
| 9  | 4.04 (307) | 0.19 | 91% HOMO→LUMO+5   | π-π* (6) |            |
| 1  | 2.58 (480) | 0.26 | 93% HOMO→LUMO     | СТ       | 2.84 (437) |
| 2  | 3.56 (348) | 0.19 | 73% HOMO-1→LUMO   | π-π* (1) | 3.99 (311) |
| 3  | 3.79 (327) | 0.29 | 75% HOMO→LUMO+1   | π-π* (2) |            |
| 5  | 4.22 (294) | 0.18 | 49% HOMO-2→LUMO   | π-π* (3) |            |
| 10 | 5.08 (244) | 0.13 | 47% HOMO-1→LUMO+1 | π-π* (4) |            |
|    |            |      |                   |          |            |

R2

R1

<sup>a</sup> Order of calculated transitions according to energy.

| Dye | nª | <i>E</i> (ev, nm) | f    | Composition       | Character | exptl (ev, nm) |
|-----|----|-------------------|------|-------------------|-----------|----------------|
| К1  | 1  | 2.46              | 0.40 | 93% HOMO→LUMO     | СТ        | 2.66 (467)     |
|     | 3  | 2.99              | 0.37 | 89% HOMO→LUMO+1   | π-π* (1)  | 3.78 (328)     |
|     | 5  | 3.30              | 0.11 | 91% HOMO-1→LUMO+1 | π-π* (2)  | 4.41 (281)     |
|     | 6  | 3.50              | 0.17 | 45% HOMO-1→LUMO+2 | π-π* (3)  |                |
|     | 8  | 3.68              | 0.22 | 36% HOMO→LUMO+3   | π-π* (4)  |                |
|     | 9  | 3.78              | 0.55 | 43% HOMO→LUMO+4   | π-π* (5)  |                |
| К2  | 1  | 2.24              | 0.46 | 96% HOMO→LUMO     | СТ        | 2.66 (467)     |
|     | 3  | 2.88              | 0.37 | 93% HOMO→LUMO+1   | π-π* (1)  | 3.70 (335)     |
|     | 5  | 3.23              | 0.31 | 87% HOMO-1→LUMO+1 | π-π* (2)  | 4.41 (281)     |
|     | 6  | 3.28              | 0.67 | 71% HOMO-2→LUMO   | π-π* (3)  |                |
|     | 9  | 3.66              | 0.42 | 37% HOMO→LUMO+4   | π-π* (4)  |                |
| КЗ  | 1  | 2.41              | 0.69 | 90% HOMO→LUMO     | СТ        | 2.58 (481)     |
|     | 3  | 2.84              | 0.62 | 87% HOMO→LUMO+1   | π-π* (1)  | 4.05 (306)     |
|     | 5  | 3.15              | 0.15 | 92% HOMO-1→LUMO+1 | π-π* (2)  |                |
|     | 6  | 3.31              | 0.30 | 69% HOMO→LUMO+3   | π-π* (3)  |                |
|     | 9  | 3.62              | 0.14 | 56% HOMO-1→LUMO+3 | π-π* (4)  |                |
| К4  | 1  | 2.42              | 0.60 | 91% HOMO→LUMO     | СТ        | 2.67 (465)     |
|     | 3  | 2.87              | 0.51 | 92% HOMO→LUMO+1   | π-π* (1)  | 3.88 (320)     |
|     | 5  | 3.19              | 0.14 | 90% HOMO-1→LUMO+1 | π-π* (2)  |                |
|     | 6  | 3.32              | 0.29 | 56% HOMO→LUMO+3   | π-π* (3)  |                |
|     | 9  | 3.62              | 0.16 | 57% HOMO-1→LUMO+3 | π-π* (4)  |                |
| К5  | 1  | 2.43              | 0.56 | 89% HOMO→LUMO     | СТ        | 2.61 (475)     |
|     | 3  | 2.87              | 0.63 | 93% HOMO→LUMO+1   | π-π* (1)  | 3.82 (325)     |
|     | 5  | 3.17              | 0.10 | 92% HOMO-1→LUMO+1 | π-π* (2)  |                |
|     | 6  | 3.36              | 0.39 | 64% HOMO→LUMO+3   | π-π* (3)  |                |
|     | 9  | 3.63              | 0.13 | 37% HOMO-1→LUMO+3 | π-π* (4)  |                |
| К6  | 1  | 2.46              | 0.48 | 89% HOMO→LUMO     | СТ        | 2.70 (460)     |
|     | 3  | 2.76              | 0.11 | 81% HOMO-2→LUMO   | π-π* (1)  | 3.76 (330)     |
|     | 4  | 2.86              | 0.67 | 60% HOMO-1→LUMO+1 | π-π* (2)  |                |
|     | 6  | 2.92              | 0.47 | 69% HOMO→LUMO+2   | π-π* (3)  |                |
| К7  | 1  | 2.44              | 0.56 | 90% HOMO→LUMO     | СТ        | 2.70 (459)     |
|     | 4  | 2.83              | 0.34 | 52% HOMO→LUMO+1   | π-π* (1)  | 3.73 (332)     |
|     | 5  | 2.86              | 0.27 | 43% HOMO→LUMO+1   | π-π* (2)  |                |
|     | 6  | 2.91              | 0.45 | 70% HOMO→LUMO+2   | π-π* (3)  |                |

**Table S2** Calculated TDDFT excitation energies (E), oscillator strengths (f), MO compositions and characters, are compared with experimental absorptions based on DFT at the B3PW91/6-31G (d,p) level.

| K8 | 1  | 2.63 | 0.31 | 92% HOMO→LUMO     | СТ       | 2.71(458)  |
|----|----|------|------|-------------------|----------|------------|
|    | 4  | 3.11 | 0.57 | 91% HOMO-1→LUMO+1 | π-π* (1) | 3.82(325)  |
|    | 8  | 3.57 | 0.23 | 41% HOMO-2→LUMO   | π-π* (2) |            |
|    | 9  | 3.63 | 0.37 | 74% HOMO-1→LUMO+3 | π-π* (3) |            |
|    | 10 | 3.70 | 0.18 | 49% HOMO→LUMO+4   | π-π* (4) |            |
| R1 | 1  | 2.34 | 0.28 | 96% HOMO→LUMO     | СТ       | 2.76 (450) |
|    | 2  | 2.67 | 0.11 | 91% HOMO-1→LUMO   | π-π* (1) | 3.94 (315) |
|    | 3  | 3.44 | 0.48 | 61% HOMO→LUMO+1   | π-π* (2) |            |
|    | 4  | 3.61 | 0.15 | 54% HOMO-2→LUMO   | π-π* (3) |            |
|    | 5  | 3.71 | 0.49 | 50% HOMO-1→LUMO+1 | π-π* (4) |            |
|    | 9  | 4.05 | 0.19 | 91% HOMO→LUMO+5   | π-π* (5) |            |
|    | 10 | 4.09 | 0.29 | 79% HOMO-3→LUMO   | π-π* (6) |            |
| R2 | 1  | 2.57 | 0.25 | 93% HOMO→LUMO     | СТ       | 2.84 (437) |
|    | 2  | 3.57 | 0.17 | 69% HOMO-1→LUMO   | π-π* (1) | 3.99 (311) |
|    | 3  | 3.79 | 0.33 | 71% HOMO→LUMO+1   | π-π* (2) |            |
|    | 5  | 4.24 | 0.16 | 46% HOMO-1→LUMO+3 | π-π* (3) |            |
|    | 7  | 4.44 | 0.10 | 39% HOMO-2→LUMO   | π-π* (4) |            |
|    | 9  | 5.07 | 0.11 | 50% HOMO-1→LUMO+1 | π-π* (5) |            |
|    |    |      |      |                   |          |            |

<sup>a</sup> Order of calculated transitions according to energy.

| Ονο  | na     | E (ev. nm) | f    | Composition       | Character | evntl (ev. nm) |
|------|--------|------------|------|-------------------|-----------|----------------|
|      | 1      | 4.04       | J    |                   |           |                |
| VT . | т<br>Э | 4.04       | 0.98 |                   | UI        | 2.00 (40/)     |
|      | 2      | 4.24       | 0.48 |                   | π-π* (1)  | 3.78 (328)     |
|      | 3      | 4.92       | 0.20 |                   | π-π* (2)  | 4.41 (281)     |
|      | 4      | 5.09       | 0.24 | 17% HOMO-1→LUMO+5 | π-π* (3)  |                |
|      | 6      | 5.37       | 0.49 | 22% HOMO→LUMO+5   | π-π* (4)  |                |
|      | 7      | 5.46       | 0.26 | 22% HOMO→LUMO+5   | π-π* (5)  |                |
|      | 8      | 5.85       | 0.12 | 22% HOMO→LUMO+6   | π-π* (6)  |                |
|      | 10     | 6.22       | 0.13 | 15% HOMO→LUMO+7   | π-π* (7)  |                |
| К2   | 1      | 4.00       | 1.69 | 25% HOMO→LUMO+1   | СТ        | 2.66 (467)     |
|      | 2      | 4.13       | 0.33 | 31% HOMO→LUMO+1   | π-π* (1)  | 3.70 (335)     |
|      | 4      | 4.94       | 0.12 | 44% HOMO→LUMO+2   | π-π* (2)  | 4.41 (281)     |
|      | 6      | 5.35       | 0.51 | 14% HOMO→LUMO+4   | π-π* (3)  |                |
|      | 7      | 5.44       | 0.26 | 17% HOMO→LUMO+6   | π-π* (4)  |                |
|      | 9      | 5.83       | 0.13 | 70% HOMO-6→LUMO   | π-π* (5)  |                |
|      | 10     | 5.84       | 0.14 | 7% HOMO-3→LUMO+3  | π-π* (6)  |                |
| КЗ   | 1      | 4.02       | 1.46 | 48% HOMO→LUMO+1   | СТ        | 2.58 (481)     |
|      | 2      | 4.18       | 0.35 | 35% HOMO-1→LUMO   | π-π* (1)  | 4.05 (306)     |
|      | 3      | 4.80       | 0.37 | 50% HOMO→LUMO+2   | π-π* (2)  |                |
|      | 5      | 5.17       | 0.77 | 11% HOMO-1→LUMO+3 | π-π* (3)  |                |
|      | 6      | 5.22       | 0.30 | 35% HOMO-3→LUMO   | π-π* (4)  |                |
| К4   | 1      | 4.08       | 1.40 | 32% HOMO→LUMO+1   | СТ        | 2.67 (465)     |
|      | 2      | 4.18       | 0.21 | 23% HOMO-1→LUMO   | π-π* (1)  | 3.88 (320)     |
|      | 3      | 4.94       | 0.34 | 33% HOMO→LUMO+2   | π-π* (2)  |                |
|      | 6      | 5.27       | 1.14 | 10% HOMO→LUMO+5   | π-π* (3)  |                |
| К5   | 1      | 4.05       | 1.18 | 66% HOMO→LUMO+1   | СТ        | 2.61 (475)     |
|      | 2      | 4.20       | 0.46 | 49% HOMO-1→LUMO   | π-π* (1)  | 3.82 (325)     |
|      | 3      | 4.88       | 0.22 | 65% HOMO→LUMO+2   | π-π* (2)  |                |
|      | 4      | 5.07       | 0.12 | 24% HOMO-1→LUMO+4 | π-π* (3)  |                |
|      | 5      | 5.19       | 0.94 | 30% HOMO→LUMO+3   | π-π* (4)  |                |
|      | 6      | 5.22       | 0.17 | 33% HOMO-3→LUMO   | π-π* (5)  |                |
| К6   | 1      | 3.94       | 0.82 | 85% HOMO→LUMO+2   | СТ        | 2.70 (460)     |
|      | 2      | 4.05       | 1.06 | 79% HOMO-1→LUMO+1 | π-π* (1)  | 3.76 (330)     |
|      | 3      | 4.33       | 0.59 | 54% HOMO-2→LUMO   | π-π* (2)  | . ,            |
|      | 5      | 4.88       | 0.26 | 61% HOMO-1→LUMO+3 | π-π* (3)  |                |

**Table S3** Calculated TDDFT excitation energies (E), oscillator strengths (f), MO compositions and characters, are compared with experimental absorptions based on 6-31G (d,p) basis set at Hartree-Fock level.

|    | 6 | 5.11 | 0.36 | 13% HOMO-1→LUMO+5 | π-π* (4) |            |
|----|---|------|------|-------------------|----------|------------|
|    | 7 | 5.22 | 0.83 | 10% HOMO-1→LUMO+5 | π-π* (5) |            |
|    | 8 | 5.25 | 0.34 | 11% HOMO→LUMO+6   | π-π* (6) |            |
|    | 9 | 5.29 | 0.16 | 18% HOMO→LUMO+6   | π-π* (7) |            |
| К7 | 1 | 3.94 | 0.78 | 65% HOMO→LUMO+2   | СТ       | 2.70 (459) |
|    | 2 | 4.10 | 1.14 | 54% HOMO-1→LUMO+1 | π-π* (1) | 3.73 (332) |
|    | 3 | 4.30 | 0.50 | 42% HOMO-2→LUMO   | π-π* (2) |            |
|    | 4 | 4.81 | 0.11 | 62% HOMO→LUMO+4   | π-π* (3) |            |
|    | 5 | 4.95 | 0.53 | 32% HOMO-1→LUMO+3 | π-π* (4) |            |
|    | 6 | 5.01 | 0.18 | 32% HOMO-1→LUMO+5 | π-π* (5) |            |
|    | 7 | 5.25 | 0.19 | 11% HOMO→LUMO+6   | π-π* (6) |            |
|    | 8 | 5.28 | 0.19 | 31% HOMO→LUMO+6   | π-π* (7) |            |
|    | 9 | 5.32 | 1.07 | 9% HOMO-2→LUMO+10 | π-π* (8) |            |
| K8 | 1 | 4.08 | 1.05 | 85% HOMO→LUMO+1   | СТ       | 2.71(458)  |
|    | 2 | 4.36 | 0.53 | 60% HOMO-1→LUMO   | π-π* (1) | 3.82(325)  |
|    | 3 | 4.93 | 0.12 | 76% HOMO→LUMO+2   | π-π* (2) |            |
|    | 4 | 5.20 | 0.24 | 21% HOMO-1→LUMO+4 | π-π* (3) |            |
|    | 5 | 5.26 | 0.29 | 32% HOMO-2→LUMO   | π-π* (4) |            |
|    | 6 | 5.38 | 0.40 | 47% HOMO→LUMO+3   | π-π* (5) |            |
| R1 | 1 | 4.15 | 0.75 | 39% HOMO-1→LUMO   | СТ       | 2.76 (450) |
|    | 2 | 5.00 | 0.39 | 45% HOMO→LUMO+1   | π-π* (1) | 3.94 (315) |
|    | 3 | 5.18 | 0.28 | 12% HOMO-1→LUMO+1 | π-π* (2) |            |
|    | 4 | 5.23 | 0.65 | 6% HOMO→LUMO+4    | π-π* (3) |            |
|    | 7 | 5.49 | 0.19 | 45% HOMO→LUMO+5   | π-π* (4) |            |
| R2 | 1 | 4.21 | 0.20 | 65% HOMO→LUMO     | СТ       | 2.84 (437) |
|    | 2 | 5.12 | 0.25 | 50% HOMO→LUMO+1   | π-π* (1) | 3.99 (311) |
|    | 3 | 5.21 | 0.20 | 36% HOMO-1→LUMO   | π-π* (2) |            |
|    | 7 | 6.58 | 0.35 | 11% HOMO-3→LUMO   | π-π* (3) |            |
|    | 9 | 6.63 | 0.29 | 17% HOMO-1→LUMO+1 | π-π* (4) |            |
|    |   |      |      |                   |          |            |

<sup>a</sup> Order of calculated transitions according to energy.

| dye | DCA   | Amount <sup>a</sup> / mol cm <sup>-2</sup> | V <sub>oc</sub> /V | J <sub>sc</sub> /mA cm <sup>-2</sup> | ff   | η (%)             |
|-----|-------|--------------------------------------------|--------------------|--------------------------------------|------|-------------------|
| К1  | 0 mM  | 4.08×10 <sup>-7</sup>                      | 0.65               | 11.31                                | 0.58 | 4.25 <sup>b</sup> |
|     | 0 mM  | 2.28×10 <sup>-7</sup>                      | 0.68               | 12.36                                | 0.61 | 5.15 <sup>c</sup> |
|     | 2 mM  | 1.97×10 <sup>-7</sup>                      | 0.68               | 13.37                                | 0.62 | 5.66 <sup>c</sup> |
|     | 10 mM | 1.66×10 <sup>-7</sup>                      | 0.69               | 14.05                                | 0.63 | 6.02 <sup>b</sup> |

Table S4 DSSC performance parameters of dye K1 with or without DCA as co-adsorbent.

<sup>a</sup> Amount of dye adsorbed on TiO<sub>2</sub> film. <sup>b</sup> Experiments were conducted with TiO<sub>2</sub> photoelectrodes with 10  $\mu$ m transparent and 5  $\mu$ m scattering thickness and 0.25 cm<sup>2</sup> working area on the FTO (8  $\Omega$ /sq.) substrates. <sup>c</sup> Experiments were conducted with TiO<sub>2</sub> photoelectrodes with 5  $\mu$ m transparent and 5  $\mu$ m scattering thickness and 0.25 cm<sup>2</sup> working area on the FTO (8  $\Omega$ /sq.) substrates.