Electronic Supplementary Information

Rational Syntheses of Core-Shell Fe@(PtRu) Nanoparticle Electrocatalysts for Methanol Oxidation Reaction with Complete Suppression of CO-Poisoning and Highly Enhanced Activity

Md. Abdul Matin^a, Eunjik Lee^b, Hyunchul Kim^c, Won-Sub Yoon^c, Young-UK Kwon^{a,b*}

^aDepartment of Chemistry, Sungkyunkwan University, Suwon, 440-746, Republic of Korea ^bSKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon, 440-746, Republic of Korea

^cDepartment of Energy Science, Sungkyunkwan University, Suwon, 440-746, Republic of Korea ^{*}Corresponding author. Tel.: +82 31 290 7070; fax: +82 31 290 7075; E-mail address: ywkwon@skku.edu

Table S1. Composition of commercial Pt and PtRu, and Loading amounts of reagents for
Fe@(PtRu) samples and Fe@Pt and their ICP-AES analysis data.

Sample	Loading amount (mmole)		Carbon	Amount of element (wt.%)			Total	
(Atomic ratio)	acac	complexe	es of	support	(ICP-AES)		metal	
			(mg)				content	
	Pt ^{II}	Ru ^{III}	Fe ^{III}		Pt	Ru	Fe	(wt.%)
Pt/C	-	-	-	-				37.7
Fe _{0.42} @Pt _{0.58}	0.12	-	0.08	65.3	21	-	4.4	25.4
PtRu	-	-	-	-	20	10	-	30.0
$(PtRu)_{0.5}$	0.1	0.1	-	68.6	13.8	7.6	-	21.4
$Fe_{0.30}$ (PtRu) ₀	0.1	0.1	0.068	76.7	13.9	7.2	4.0	25.1
.35								
$Fe_{0.34}$ (PtRu) ₀	0.1	0.1	0.077	79.3	15.3	8.1	4.7	28.1
.33								
$Fe_{0.38}$ (PtRu) ₀	0.1	0.1	0.084	80.7	14.3	7.4	5.3	27.0
.31								
$Fe_{0.44}$ (PtRu) ₀	0.1	0.1	0.1	81.9	13.7	7.1	6.1	26.9
.28								

Calculations of shell thickness on a sphere core-shell NP

Atomic volumes (V_a, cm³/mol): Pt, 9.1; Ru, 8.3; Fe, 7.1

In the formula $Fe_x@(PtRu)_{(1-x)/2}$

On the x = 0.30 (Fe_{0.30}@(PtRu)_{0.35}) sample:

- Average diameter of the NPs is d = 2.1 nm (from TEM)
 - Radius of a NP (r) = $1/2 \times d = 1.05$ nm
 - Volume of a NP (V_{NP}) = $4\pi r^3/3 = 4.85 \text{ nm}^3$
 - Volume fraction of Fe (Vf_{Fe}) = 0.30 V_a(Fe)/(0.30 V_a(Fe) + 0.35 (V_a(Pt) + V_a(Ru)) = 0.259(1)
 - Volume of the Fe core in the NP (V_{Fe}) = $Vf_{Fe} \times V_{NP}$ = 1.25 nm³
 - Radius of Fe core $(R_{Fe}) = (3/4\pi \times V_{Fe})^{1/3} = 0.66$ nm

Thickness of (PtRu)-shell = 1.05 - 0.66 = 0.39 nm

On the x = 0.44 (Fe_{0.44}@(PtRu)_{0.28}) sample:

- Average diameter of the NPs is d = 2.3 nm (from TEM)
 - Radius of a NP (r) = $1/2 \times d = 1.15$ nm
 - Volume of a NP (V_{NP}) = $4\pi r^3/3 = 6.37 \text{ nm}^3$
 - Volume fraction of Fe (Vf_{Fe}) = 0.44 V_a(Fe)/(0.44 V_a(Fe) + 0.28 (V_a(Pt) + V_a(Ru)) = 0.391
 - Volume of the Fe core in the NP (V_{Fe}) = $Vf_{Fe} \times V_{NP}$ = 2.49 nm³
 - Radius of Fe core $(R_{Fe}) = (3/4\pi \times V_{Fe})^{1/3} = 0.84$ nm

Thickness of (PtRu)-shell = 1.15 - 0.84 = 0.31 nm

Fig. S1 (a) TEM image, (b) particle size distribution plot (by counting 200 NPs), and (c) HRTEM image of (PtRu)_{0.5}.

Table S2. Summary of XPS analyses on PtRu, $(PtRu)_{0.5}$, $Fe_{0.30}$ (PtRu)_{0.35}, and $Fe_{0.44}$ (PtRu)_{0.28}.

Sample	BE (Δ BE with respect to Pt or Ru in (PtRu) _{0.5}) (eV)						
	Pt 4f _{7/2}	Pt 4f _{5/2}	Ru 3d _{5/2}				
PtRu	71.26	74.51	280.20				
$(PtRu)_{0.5}$	71.28	74.45	280.26				
$Fe_{0.30}$ @(PtRu) _{0.35}	71.43 (+0.15)	74.67 (+0.22)	280.49 (+0.23)				
$Fe_{0.44}$ (PtRu) _{0.28}	71.47 (+0.19)	74.72 (+0.27)	280.52 (+0.26)				

Fig. S2 XPS spectra on (a) Pt 4f region and (b) Ru 3d region of PtRu sample.

Fig. S3 Comparison of electrochemical data of PtRu, Pt/C, and Fe@Pt: (a) CV, (b) CO-stripping curve, (c) CV of MOR, and (d) LSVs of MOR.

Fig. S4 Chronoamperometric curves of x = 0.0, 0.30, 0.34, 0.38, and 0.44 samples, PtRu, Fe@Pt, and Pt/C at applied potential of 0.65 V.

Fig. S5 CV curves of Cu-stripping measurements on $Fe_x@(PtRu)_{(1-x)/2}$ (x = 0, 0.30, 0.34, 0.38, 0.44) and PtRu samples measured in 0.1 HClO₄ aqueous solution containing 1 M CuSO₄.

Fig. S6 LSVs of $Fe_x@(PtRu)_{(1-x)/2}$ (x = 0.0, 0.30, 0.34, 0.38, 0.44) and PtRu samples measured in an electrolyte of 0.1 HClO₄ containing 1 M CH₃OH. Inset shows onset potentials of MOR on all catalysts.