Supplementary Information for

Benchmarking Quantum Chemistry Predictions of Framework Structures and Properties in a Chemically Diverse Test Set of Metal Organic Frameworks

Dalar Nazarian¹, P. Ganesh², and David S. Sholl¹

¹ School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332.

² Center for Nanophase Materials Sciences Oak Ridge National Laboratory,

Oak Ridge, TN 37831.

REFCODE	Chemical Formula	Experin Parame	iental ters (Å)	Lattice	kpoints	Comments
		а	b	с		
QEJZUB01 ¹	$Cu_{3}H_{4}C_{10}O_{10}$	6.77	6.89	12.36	4 x 4 x 2	
HOGWAB ²	Fe ₄ H ₄ C ₄ O ₁₂					
		5.54	5.93	7.27	4 x 4 x 4	
HAWVOQ01 ³	Co ₂ C ₈ N ₁₂					
		5.97	7.06	7.41	4 x 4 x 4	
RORQOE⁴	$Ag_4C_{12}C_{14}O_8$					
		5.29	6.34	11.40	6 x 4 x 2	
OFUWIV01 ⁵	Zn ₁ H ₄ C ₄ O ₄					
		4.83	4.83	6.25	6 x 6 x 4	
MURCEH ⁶	Cu ₈ H ₈ C ₈ N ₁₂ Cl ₈					Antiferromagnetic:
	0 0 0 12 0				4 x 4 x 2	see below for spin
-		5.02	5.81	19.25		states for each metal
WAJJAU'	Li ₃₂ Zn ₃₂ H ₂₄ C ₇₂ O ₉₆					For PBE-D2
					2 x 2 x 2	(Li: C6 = $31.47 \frac{\text{Jnm}^6}{\text{mol}}$
		11.28	16.34	16.34		R0 = 2.077 Å)
PIJGEV ⁸	Cd ₂ H ₁₀ C ₁₆ N ₄ O ₁₀					
		7 55	7 64	8 47	4 x 4 x 4	
KOM IFC ⁹	Sm.H.,C.,O.,	1.00	/.04	0.47		For PBF-D?
KOMJEC	5m2m12C10C14				4 v 4 v 4	(Sm: C6 -33.98)
				0.07		$\frac{Jnm^6}{R0} = 2.226 \text{ Å}$
		6.76	7.67	8.05		mol $\mathbf{K}0 = 2.220$ R)
YORSII	$Dy_2H_{12}C_{12}N_2O_{16}$		- 01	0.45		
11		6.74	7.81	9.17	4 x 4 x 2	
DEMLIR	Fe ₄ P ₄ H ₁₆ C ₈ O ₂₄					Antiferromagnetic:
		6.61	8.36	9.62	4 x 4 x 2	states for each metal

Table S 1: MOF primitive unit cell size and computational parameter setup. An energy cut off of 520 eV was used for all calculations.

Figure S 2: HAWVOQ01 and QEJZUB01, with metal centers of Co and CuI, respectively were analyzed for change in predicted energy per atom with increase in kpoint density. The PBE-D2 functional was used. We find that after 1000 kpoints/atom, the predicted energies are within the convergence criteria of 0.0001 eV.

Figure S 3: HAWVOQ01, HOGWAB, and anti-ferromagnetic DEMLIR with magnetic centers, Co, Fe, and Fe, respectively, were analyzed for change in volume, the geometry of the local metal center environment (bond length, bond angle, and torsion angle) and ground state energy. The results are shown as magnitude of percent change compared to structures predicted without spin polarization. The PBE functional was used.

Figure S 4: MAD of PLDs and LCDs for all MOFs in test set

Figure S 5: Charge density difference isosurfaces between vdw-DF2 and PBE for the experimental structure of RORQOE MOF. (Ag: silver, C: brown, O: red, Cl: green). Isosurfaces plotted at 0.002 electrons/ bohr³ with red indicating a positive and blue a negative difference. Slightly higher oxygen and chlorine density is predicted for oxygen with vdw-DF2 than PBE. When the structure of RORQOE energy is minimized, vdw-DF2 predicts a more accurate, 10° smaller, Cl-Ag-O bond angle then PBE.

Figure S 6: Deviation of LCD from experimental structure.

	M06L	PBE	PW91	PBE-D2	PBE-D3	vdw-DF2
RORQOE (Ag)	0.59	0.58	0.57	0.27	0.02	0.20
PIJGEV (Cd)	0.25	0.25	0.20	0.03	0.07	0.16
HAWVOQ01 (Co)	0.37	0.41	0.42	0.21	0.18	0.09
QEJZUB01 (Cu I)	0.24	0.24	0.24	0.11	0.16	0.16
MURCEH (Cu II)	0.16	0.17	0.16	0.05	0.07	0.21
YORSII (Dy)	0.12	0.15	0.11	0.04	0.05	0.11
HOGWAB (Fe)	0.17	0.17	0.18	0.08	0.06	0.23
DEMLIR (Fe)	0.15	0.12	0.13	0.21	0.21	0.06
KOMJEC (Sm)	0.18	0.18	0.18	0.09	0.06	0.12
OFUWIV01 (Zn)	0.16	0.16	0.16	0.03	0.09	0.10
GUPCUQ01 (Cd)	0.30	0.30	0.28	0.10	0.14	0.32
WAJJAU (Li Zn)	0.14	0.16	0.16	0.07	0.06	0.40

Table S 2: MAD of Δ in lattice parameters (Å) by MOF

Table S 3: MAD of Δ in bond length (Å) by MOF

	M06L	PBE	PW91	PBE-D2	PBE-D3	vdw-DF2
RORQOE (Ag)	0.076	0.074	0.064	0.028	0.015	0.078
PIJGEV (Cd)	0.062	0.062	0.055	0.022	0.033	0.077
HAWVOQ01 (Co)	0.213	0.208	0.203	0.186	0.198	0.182
QEJZUB01 (Cu I)	0.112	0.112	0.109	0.051	0.050	0.064
MURCEH (Cu II)	0.032	0.028	0.035	0.009	0.014	0.064
YORSII (Dy)	0.024	0.035	0.023	0.022	0.025	0.045
HOGWAB (Fe)	0.085	0.085	0.083	0.052	0.051	0.030
DEMLIR (Fe)	0.033	0.065	0.068	0.075	0.076	0.036
KOMJEC (Sm)	0.026	0.027	0.026	0.011	0.015	0.056
OFUWIV01 (Zn)	0.038	0.038	0.034	0.023	0.041	0.054
GUPCUQ01 (Cd)	0.051	0.053	0.047	0.023	0.032	0.080
WAJJAU (Li Zn)	0.029	0.024	0.028	0.023	0.021	0.073

	M06L	PBE	PW91	PBE-D2	PBE-D3	vdw-DF2
RORQOE (Ag)	4.76	4.72	4.78	3.67	0.55	1.48
PIJGEV (Cd)	2.14	2.08	1.80	1.17	1.17	0.65
HAWVOQ01 (Co)	0.93	0.95	0.98	0.36	0.44	0.64
QEJZUB01 (Cu I)	2.95	2.96	2.88	0.77	0.53	2.60
MURCEH (Cu II)	1.82	1.85	2.39	1.06	0.91	1.37
YORSII (Dy)	1.95	2.07	2.01	2.15	1.37	1.20
HOGWAB (Fe)	1.88	1.88	2.14	3.43	3.13	5.17
DEMLIR (Fe)	1.09	1.62	1.73	1.97	1.94	1.74
KOMJEC (Sm)	2.40	2.34	2.40	1.32	1.17	1.50
OFUWIV01 (Zn)	2.24	2.24	2.35	0.86	1.01	0.97
GUPCUQ01 (Cd)	0.52	0.74	0.47	1.35	1.40	2.39
WAJJAU (Li Zn)	0.83	0.69	0.56	0.99	1.02	1.39

Table S 4: MAD of Δ in bond angle (°) by MOF

Table S 5: MAD of Δ in torsion angle (°) by MOF

	M06L	PBE	PW91	PBE-D2	PBE-D3	vdw-DF2
RORQOE (Ag)	9.37	9.27	9.39	7.28	1.06	2.21
PIJGEV (Cd)	5.78	5.67	4.86	3.91	2.84	2.42
HAWVOQ01 (Co)	11.21	14.73	13.24	8.13	7.72	6.79
QEJZUB01 (Cu I)	6.18	3.95	5.83	7.87	7.55	5.94
MURCEH (Cu II)	12.90	11.38	6.73	12.93	8.11	11.63
YORSII (Dy)	8.54	8.58	8.85	6.57	7.14	5.09
HOGWAB (Fe)	2.15	2.15	2.80	4.78	4.30	7.92
DEMLIR (Fe)	3.43	8.78	8.79	11.48	10.74	8.98
KOMJEC (Sm)	10.87	10.83	10.87	4.17	3.95	5.62
OFUWIV01 (Zn)	5.05	5.05	4.92	2.78	2.83	4.20
GUPCUQ01 (Cd)	1.14	1.27	1.08	1.63	1.75	2.16
WAJJAU (Li Zn)	1.52	1.83	1.70	1.44	1.27	4.04

Table S 6: Δ in PLD (Å) by MOF

	M06L	PBE	PW91	PBE-D2	PBE-D3	vdw-DF2
RORQOE (Ag)	0.20	0.20	0.20	-0.20	-0.01	0.13
PIJGEV (Cd)	0.13	0.13	0.06	0.01	-0.03	-0.01
HAWVOQ01 (Co)	0.33	0.20	0.36	-0.30	-0.28	-0.22
QEJZUB01 (Cu I)	0.11	0.11	0.10	-0.11	-0.10	-0.25
MURCEH (Cu II)	0.15	0.16	0.16	-0.03	0.02	0.08
YORSII (Dy)	0.14	0.15	0.15	-0.03	0.02	0.07
HOGWAB (Fe)	-0.17	-0.18	-0.17	-0.32	-0.32	-0.41
DEMLIR (Fe)	0.06	-0.10	-0.11	-0.23	-0.20	-0.13
KOMJEC (Sm)	0.09	0.09	0.09	-0.15	-0.13	-0.09
OFUWIV01 (Zn)	0.18	0.18	0.18	-0.11	-0.05	-0.05
GUPCUQ01 (Cd)	0.07	0.08	0.08	-0.02	-0.01	-0.01
WAJJAU (Li Zn)	0.04	0.01	0.03	-0.04	-0.08	0.22

Table S 7: Δ in LCD (Å) by MOF

	M06L	PBE	PW91	PBE-D2	PBE-D3	vdw-DF2
RORQOE (Ag)	0.28	0.28	0.28	-0.03	0.00	0.09
PIJGEV (Cd)	-0.01	-0.02	-0.07	0.06	0.07	0.10
HAWVOQ01 (Co)	0.27	0.40	0.23	-0.24	-0.22	-0.11
QEJZUB01 (Cu I)	0.18	0.18	0.18	0.00	0.01	-0.10
MURCEH (Cu II)	0.15	0.14	0.14	-0.11	-0.09	0.06
YORSII (Dy)	0.01	-0.03	-0.04	-0.30	-0.24	-0.14
HOGWAB (Fe)	0.06	0.06	0.06	-0.06	-0.02	-0.10
DEMLIR (Fe)	0.11	-0.03	-0.04	-0.09	-0.09	-0.03
KOMJEC (Sm)	0.05	0.04	0.04	0.15	0.17	0.09
OFUWIV01 (Zn)	0.23	0.23	0.22	-0.17	-0.12	-0.12
GUPCUQ01 (Cd)	0.21	0.24	0.21	-0.05	-0.02	0.09
WAJJAU (Li Zn)	0.04	0.10	0.03	0.10	0.04	0.20

HOGWAB				RORQOE				HAWVOQ01			
0	Fe	0	78.47	Cl	Ag	0	68.37	Ν	Co	Ν	94.86
0	Fe	0	73.86	Cl	Ag	0	74.94	Ν	Со	Ν	85.14
0	Fe	0	88.31	Cl	Ag	0	135.63	Ν	Co	Ν	91.05
0	Fe	0	161.34	Cl	Ag	0	137.90	Ν	Co	Ν	88.95
0	Fe	0	87.09	0	Ag	0	110.23				
0	Fe	0	152.01	0	Ag	0	108.82				
0	Fe	0	93.86	0	Ag	0	139.57				
0	Fe	0	87.34	0	Ag	0	137.82				
0	Fe	0	88.92	0	Ag	0	65.96				
0	Fe	0	89.51	0	Ag	0	74.16				
0	Fe	0	120.59								
0	Fe	0	85.59								
0	Fe	0	80.54								
0	Fe	0	174.05								
0	Fe	0	104.87								

Table S 8: Angles of the experimental crystal structures considered for three example MOFs in the test set.

Our studies show that results for the mechanical properties for DEMLIR are sensitive to the number of processors used for the calculations. Each calculation for DEMLIR has been tested along four differently compiled versions of VASP, using version 5.2.12 and 5.3.5 and two different computing environments. We've found that result are reproducible as long as the same number of processors are used. Energy and geometry optimization calculations are not effected by parallelization. For our study, DEMLIR mechanical properties were calculated using 32 processors.

MOF	M06	PBE	PW91	PBE-D2	PBE-D3	vdw-DF2
RORQOE (Ag)	22.7	19.6	20.7	16.5	17.1	17.9
PIJGEV (Cd)	102.1	98.1	99.4	96.6	100.3	103.7
HAWVOQ01 (Co)	23.2	19.0	21.8	21.4	20.7	17.2
QEJZUB01 (Cu I)	46.1	36.3	36.5	35.0	33.9	40.8
MURCEH (Cu II)	48.1	48.2	48.6	48.3	48.2	47.1
YORSII (Dy)	143.9	141.4	141.5	140.5	140.8	150.2
HOGWAB (Fe)	67.0	67.7	67.9	64.8	66.4	81.2
DEMLIR (Fe)	184.9	185.1	168.3	184.2	184.2	179.6
KOMJEC (Sm)	146.0	145.0	145.0	141.1	144.4	156.4
OFUWIV01 (Zn)	111.4	110.2	110.7	110.4	111.4	110.4

Table S 9: Minimum Young's modulus for MOFs in the test set (GPa)

MOF	M06	PBE	PW91	PBE-D2	PBE-D3	vdw-DF2
RORQOE (Ag)	284.9	281.4	284.5	282.5	283.4	285.3
PIJGEV (Cd)	406.7	403.5	403.2	401.7	404.7	405.4
HAWVOQ01 (Co)	482.1	461.2	466.8	464.9	468.6	461.4
QEJZUB01 (Cu I)	361.3	359.5	353.7	361.8	354.9	362.8
MURCEH (Cu II)	430.7	425.4	428.3	425.1	434.2	437.9
YORSII (Dy)	340.7	340.2	339.9	337.3	337.9	343.1
HOGWAB (Fe)	461.4	460.1	460.8	461.9	453.3	468.5
DEMLIR (Fe)	351.1	352.8	339.5	354.2	354.2	342.8
KOMJEC (Sm)	432.0	431.4	431.4	427.8	431.3	430.6
OFUWIV01 (Zn)	379.3	380.4	379.8	380.6	380.2	376.6

Table S 10: Maximum Young's modulus for MOFs in the test set (GPa)

MOF	M06	PBE	PW91	PBE-D2	PBE-D3	vdw-DF2
RORQOE (Ag)	-20.6	-25.3	-23.4	-31.1	-29.9	-28.5
PIJGEV (Cd)	0.7	0.7	0.7	0.7	0.7	0.8
HAWVOQ01 (Co)	-3	-3.6	-3.4	-3.5	-3.5	-3.2
QEJZUB01 (Cu I)	1.1	1.2	1.3	1.2	1.4	1.1
MURCEH (Cu II)	0.9	1.1	0.9	1.1	0.9	0.9
YORSII (Dy)	1.1	1.1	1.1	1.1	1.1	1.1
HOGWAB (Fe)	1.0	1.0	1.0	0.9	1.0	1.1
DEMLIR (Fe)	0.9	0.8	1.027	0.8	0.8	0.9
KOMJEC (Sm)	0.8	0.7	0.7	0.7	0.8	0.8
OFUWIV01 (Zn)	1.0	1.0	1.0	1.0	1.0	1.0

Table S 11: Minimum linear compressibility for MOFs in the test set $(TPa^{\cdot 1})$

Table S 12: Maximum linear compressibility for MOFs in the test set (TPa⁻¹)

MOF	M06	PBE	PW91	PBE-D2	PBE-D3	vdw-DF2
RORQOE (Ag)	31.7	38	36.1	46	44.4	40.3
PIJGEV (Cd)	5.6	5.9	5.8	6	5.7	5.4
HAWVOQ01 (Co)	21.2	26.2	22.9	24.5	25	25
QEJZUB01 (Cu I)	11.1	14	13.2	15.1	15	10.8
MURCEH (Cu II)	3.6	3.5	3.6	3.6	3.7	3.4
YORSII (Dy)	4.3	4.4	4.4	4.4	4.4	4
HOGWAB (Fe)	10.8	10.4	10.4	11	10.8	8.6
DEMLIR (Fe)	2.6	2.5	3.1	2.6	2.6	2.8
KOMJEC (Sm)	3.6	3.6	3.6	3.7	3.6	3.3
OFUWIV01 (Zn)	4.4	4.5	4.5	4.4	4.4	4.4

Table S 13: Minimum shear modulus for MOFs in the test set (GPa)

MOF	M06	PBE	PW91	PBE-D2	PBE-D3	vdw-DF2
RORQOE (Ag)	7.5	6.4	6.9	5.4	5.6	5.7
PIJGEV (Cd)	43.4	42.3	42.7	41.7	43.0	44.6
HAWVOQ01 (Co)	8.6	7.3	8.2	8.3	8.0	6.1
QEJZUB01 (Cu I)	14.0	10.9	10.9	10.6	10.2	12.0
MURCEH (Cu II)	15.1	15.3	15.3	15.2	15.2	14.9
YORSII (Dy)	60.2	59.5	59.5	59.2	59.6	62.2
HOGWAB (Fe)	35.3	35.0	35.2	34.1	34.8	40.1
DEMLIR (Fe)	79.2	79.1	72.2	79.4	79.4	76.1
KOMJEC (Sm)	56.2	55.8	55.8	54.3	55.6	59.1
OFUWIV01 (Zn)	44.5	44.4	44.5	44.1	44.5	43.4

MOF	M06	PBE	PW91	PBE-D2	PBE-D3	vdw-DF2
RORQOE (Ag)	112.5	111.9	112.8	112.6	112.4	112.9
PIJGEV (Cd)	162.3	161.2	161.4	160.5	161.4	162.2
HAWVOQ01 (Co)	126.0	126.7	127.5	127.1	126.3	123.4
QEJZUB01 (Cu I)	149.4	147.8	147.5	149.3	148.0	149.2
MURCEH (Cu II)	172.1	171.2	170.2	171.9	173.1	176.0
YORSII (Dy)	137.9	137.6	137.6	137.0	138.1	141.3
HOGWAB (Fe)	136.8	127.1	127.4	129.0	127.0	132.9
DEMLIR (Fe)	144.5	144.3	143.1	144.8	144.8	142.6
KOMJEC (Sm)	155.8	155.1	155.1	153.2	154.3	160.0
OFUWIV01 (Zn)	157.0	156.7	156.6	156.5	157.7	156.1

Table S 14: Maximum shear modulus for MOFs in the test set (GPa)

Table S 15: Minimum Poisson ration for MOFs in the test set

MOF	M06	PBE	PW91	PBE-D2	PBE-D3	vdw-DF2
RORQOE (Ag)	-1.16	-1.30	-1.25	-1.46	-1.43	-1.40
PIJGEV (Cd)	-0.35	-0.36	-0.35	-0.37	-0.35	-0.32
HAWVOQ01 (Co)	-0.79	-0.89	-0.82	-0.81	-0.82	-1.03
QEJZUB01 (Cu I)	-0.39	-0.50	-0.48	-0.54	-0.54	-0.39
MURCEH (Cu II)	-0.82	-0.81	-0.81	-0.82	-0.83	-0.85
YORSII (Dy)	-0.09	-0.09	-0.09	-0.09	-0.08	-0.06
HOGWAB (Fe)	-0.43	-0.39	-0.39	-0.43	-0.40	-0.31
DEMLIR (Fe)	0.02	0.03	-0.04	0.02	0.02	-0.02
KOMJEC (Sm)	-0.03	-0.03	-0.03	-0.04	-0.03	-0.03
OFUWIV01 (Zn)	-0.04	-0.05	-0.05	-0.04	-0.04	-0.06

MOF	M06	PBE	PW91	PBE-D2	PBE-D3	vdw-DF2
RORQOE (Ag)	1.70	1.83	1.78	2.01	1.97	1.94
PIJGEV (Cd)	0.78	0.79	0.78	0.78	0.78	0.77
HAWVOQ01 (Co)	1.74	2.04	1.84	1.85	1.88	2.18
QEJZUB01 (Cu I)	0.85	0.88	0.89	0.89	0.90	0.88
MURCEH (Cu II)	1.43	1.43	1.42	1.43	1.44	1.49
YORSII (Dy)	0.53	0.54	0.54	0.53	0.53	0.52
HOGWAB (Fe)	0.69	0.70	0.69	0.72	0.69	0.64
DEMLIR (Fe)	0.44	0.45	0.40	0.46	0.46	0.43
KOMJEC (Sm)	0.59	0.60	0.60	0.60	0.60	0.60
OFUWIV01 (Zn)	0.61	0.61	0.61	0.61	0.61	0.62

Table S 16: Maximum Poisson ration for MOFs in the test set

Table S 17: The difference between MAD of vdw-DF2 and PBE-D2 for lattice parameters, bond lengths, Bond Angles and Torsion Angles. Negatives values are highlighted indicate that vdw-DF2 more accurately measured that property. Structures highlighted in red represent MOFs with little difference and highlighted in green represent MOFs with higher differences in predicted charges with vdw-DF2 and PBE and structures. We do not find a strong correlation between charge transfer predicted by vdw-DF2 and better prediction of structural parameters compared to PBE-D2.

	Lattice	Bond Length	Bond Angle	Torsion Angle
RORQOE (Ag)	-0.07	0.036	0.63	2.11
PIJGEV (Cd)	0.13	0.033	0.62	0.95
HAWVOQ01 (Co)	-0.12	0.017	2.11	6.21
QEJZUB01 (Cu I)	0.05	0.058	1.02	-0.09
MURCEH (Cu II)	0.12	0.026	-0.14	2.21
YORSII (Dy)	0.07	0.001	-1.29	2.28
HOGWAB (Fe II)	0.15	0.031	-0.2	-1.98
DEMLIR (Fe III)	-0.01	0.013	0.62	-0.60
KOMJEC (Sm)	-0.01	0.015	1.49	6.7
OFUWIV01 (Zn)	0.07	0.011	-0.88	2.14
GUPCUQ01 (Cd)	0.04	0.024	-0.43	-0.55

REFERENCES

1. Ouellette, W.; Prosvirin, A. V.; Chieffo, V.; Dunbar, K. R.; Hudson, B.; Zubieta, J., Solid-state coordination chemistry of the Cu/triazolate/X system (X = F-, Cl-, Br-, I-, OH-, and SO42-). *Inorganic Chemistry* 2006, 45, (23), 9346-9366.

2. Molinier, M.; Price, D. J.; Wood, P. T.; Powell, A. K., Biomimetic control of iron oxide and hydroxide phases in the iron oxalate system. *Journal of the Chemical Society-Dalton Transactions* 1997, (21), 4061-4068.

3. Kurmoo, M.; Kepert, C. J., Hard magnets based on transition metal complexes with the dicyanamide anion, {N(CN)(2)}(-). *New Journal of Chemistry* 1998, 22, (12), 1515-1524.

4. Frenzer, W.; Wartchow, R.; Bode, H., Crystal structure of disilver 2,5-dichloro-[1,4]benzoquinone-3,6-diolate, Ag-2(C6O4Cl2). *Zeitschrift Fur Kristallographie* 1997, 212, (3), 237-237.

5. Bowden, T. A.; Milton, H. L.; Slawin, A. M. Z.; Lightfoot, P., Hydrothermal syntheses and crystal structures of three zinc succinates: Zn(C4H4O4)-alpha, Zn(C4H4O4)-beta and K2Zn(C4H4O4)(2). *Dalton Transactions* 2003, (5), 936-939.

6. Cao, R.; Shi, Q.; Sun, D. F.; Hong, M. C.; Bi, W. H.; Zhao, Y. J., Syntheses and characterizations of copper(II) polymeric complexes constructed from 1,2,4,5-benzenetetracarboxylic acid. *Inorganic Chemistry* 2002, 41, (23), 6161-6168.

7. Xie, L. H.; Lin, J. B.; Liu, X. M.; Wang, Y.; Zhang, W. X.; Zhang, J. P.; Chen, X. M., Porous Coordination Polymer with Flexibility Imparted by Coordinatively Changeable Lithium Ions on the Pore Surface. *Inorganic Chemistry* 2010, 49, (3), 1158-1165.

8. Wang, C. C.; Kuo, C. T.; Yang, J. C.; Lee, G. H.; Shih, W. J.; Sheu, H. S., Assemblies of two new metalorganic frameworks constructed from Cd(II) with 2,2 '-bipyrimidine and cyclic oxocarbon dianions CnOn2- (n=4, 5). *Crystal Growth & Design* 2007, 7, (8), 1476-1482.

9. Zhang, X. J.; Xing, Y. H.; Han, J.; Zeng, X. Q.; Ge, M. F.; Niu, S. Y., A series of novel Ln-succinateoxalate coordination polymers: synthesis, structure, thermal stability, and fluorescent properties. *Crystal Growth & Design* 2008, 8, (10), 3680-3688.

10. Kong, X. J.; Zhuang, G. L.; Ren, Y. P.; Long, L. S.; Huang, R. B.; Zheng, L. S., In situ cyclodehydration of iminodiacetic acid into 2,5-diketopiperazine-1,4-diacetate in lanthanide-based coordination polymers. *Dalton Transactions* 2009, (10), 1707-1709.

11. Hou, J. J.; Zhang, X. M., Structures and magnetic properties of a series of metal phosphonoacetates synthesized from in situ hydrolysis of triethyl phosphonoacetate. *Crystal Growth & Design* 2006, 6, (6), 1445-1452.