Supporting information for

MoS₂ Architectures Supported on Graphene Foam/Carbon Nanotube Hybrid Films: Highly Integrated Frameworks with Ideal Contact for Superior Lithium Storage

By Jin Wang, Jilei Liu, Jingshan Luo, Pei Liang, Dongliang Chao, Linfei Lai, Jianyi Lin* and Zexiang Shen*

J. Wang, Prof. Z. X. Shen Energy Research Institute (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, Research Techno Plaza, 50 Nanyang Drive, 637553, Singapore E-mail: Zexiang@ntu.edu.sg (Z.X. Shen) E-mail: Lijy@ntu.edu.sg (J.Y. Lin)

J. Wang, J. L. Liu, J. S. Luo, P. Liang, D. L. Chao, Prof. Z. X. Shen Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore

P. LiangCollege of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China

L. F. Lai, Prof. J. Y. Lin Energy Research Institute (ERI@N), Nanyang Technological University, 50 Nanyang Drive, 637553, Singapore

Keywords: molybdenum sulfide, graphene, CNT, flexible, lithium ion batteries

Electrode	1st Specific	1st	Cycling stability	Rate performance
description	capacity (mAhg ⁻¹)	Coulombic		
		efficiency		
Worm-like MoS ₂ nanoarchitectures on GF/CNTs film (this work)	$1568 \text{ mAh } \text{g}^{-1}$ at $100 \text{ mA } \text{g}^{-1}$	79.8%	1112 mAh g^{-1} after 120 cycles at 200 mA g^{-1}	1368, 1140, 1064,1006 and 823 mAh g^{-1} at 200, 500,1000, 2000 and5000 mA g^{-1}
Honeycomb-like MoS ₂ nanoarchitectures on 3DGF ¹	1397 mAh g^{-1} at 100 mA g^{-1}	82.9%	1100 mAh g^{-1} after 60 cycles at 200 mA g^{-1}	1172, 1095, 1007, 966 and 800 mAh g^{-1} at 200, 500, 1000, 2000 and 5000 mA g^{-1}
$MoS_2@graphene$ nanocables ²	1150 mAh g^{-1} at 500 mA g^{-1}		900 mAh g^{-1} after 700 cycles at 5 A g^{-1}	1150 and 700 mAh g^{-1} at 500 mA g^{-1} and 10 A g^{-1}
MoS ₂ -carbon nanofiber composite ³	1712 mAh g^{-1} at 100 mA g $^{-1}$	74%	1007 mAh g^{-1} after 100 cycles at 1 A g^{-1}	1095, 986, 768, 637, 620, 548 and 347 mAh g^{-1} at 0.5, 1, 5, 10, 20, 30 and 50 A g^{-1}
MoS ₂ -graphene-carbo n nanotube nanocomposites ⁴	949 mAh g^{-1} at 100 mA g^{-1}		886 mAh g^{-1} after 100 cycles at 1 A g^{-1}	949, 883, 858, 737 and 652 mAh g^{-1} at 100, 500, 1000, 5000 and 10000 mA g^{-1}
Hierarchical C@MoS ₂ microspheres ⁵			750 mAh g^{-1} after 50 cycles at 100 mA g^{-1}	500 mAh g^{-1} at 1000 mA g^{-1}
MoS ₂ nanoflake array/carbon cloth ⁶	3.5 mAh cm ^{-2} at a current density of 0.15 mA cm ^{-2}	97.6%		3.26, 2.73, 2.39, 1.72, 1.24, and 0.85 mAh cm ⁻² at current densities of 0.15, 0.3, 0.75, 1.5, 2.25, and 3.0 mA cm ⁻²
MoS ₂ /3DGN ⁷	1222 mAh g^{-1} at 100 mA g ⁻¹	83.50%	877 mAh g^{-1} after 50 cycles at 100 mA g^{-1}	849, 782, 692, 597 and 466 mAh g^{-1} at 100, 200, 500, 1000 and 4000 mA g^{-1}
MoS ₂ /graphene nanosheet ⁸	2200 mAh g^{-1} at 100 mA g ⁻¹	59.10%	1290 mAh g^{-1} after 50 cycles at 100 mA g^{-1}	1040 mAh g^{-1} at 1000 mA g^{-1}

Table S1 A survey of electrochemical properties of MoS_2 and its hybrid composites.

MoS ₂ /graphene composites ⁹	1462 mAh g^{-1} at 100 mA g^{-1}	58.5%	1187 mAh g^{-1} after 100 cycles at 100 mA g^{-1}	900 mAh g^{-1} at 1000 mA g^{-1}
MoS ₂ /amorphous carbon ¹⁰	2100 mAh g^{-1} at 100 mA g^{-1}	44.10%	912 mAh g^{-1} after 100 cycles at 100 mA g^{-1}	
CNT@MoS ₂ ¹¹	1434 mAh g^{-1} at 100 mA g $^{-1}$	60.01%	$\begin{array}{c} 698 \text{mAh} \text{g}^{-1} \\ \text{after 60 cycles at} \\ 100 \ \text{mA} \ \text{g}^{-1} \end{array}$	653, 459 and 369 mAh g^{-1} at 200, 500 and 1000 mA g^{-1}
MoS ₂ /amorphous carbon ¹²	2108 mAh g^{-1} at 100 mA g ⁻¹	79%	755 mAh g^{-1} after 100 cycles at 100 mA g^{-1}	850 mAh g^{-1} at 400 mA g^{-1}
MoS ₂ /PS microspheres ¹³	1160 mAh g ⁻¹ at 100 mA g ⁻¹	68.20%	672 mAh g^{-1} after 50 cycles at 100 mA g^{-1}	726, 581 and 353 mAh g^{-1} at 200, 500 and 1000 mA g^{-1}
Graphene-network-ba cknoned MoS ₂ ¹⁴	1200 mAh g^{-1} at 600 mA g ⁻¹	68%	1200 mAh g^{-1} after 30 cycles at 600 mA g^{-1}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
MoS_2 nanoplates ¹⁵	1062 mAh g^{-1} at 1062 mA g $^{-1}$	87%	907 mAh g^{-1} after 50 cycles at 100 mA g^{-1}	790 and 700 mAh g^{-1} at 31.8 and 53.1A g^{-1}
3D MoS ₂ flowers ¹⁶	869 mAh g^{-1} at 100 mA g^{-1}	65.90%	633 mAh g^{-1} after 50 cycles at 100 mA g^{-1}	848 and 740 mAh g^{-1} at 100 and 400 mA g^{-1}
Mesoporous MoS ₂ ¹⁷	1052 mAh g^{-1} at 100 mA g ⁻¹	83.90%	876 mAh g^{-1} after 100 cycles at 100 mA g^{-1}	903, 880, 845, 795, 748, 670 and 608 mAh g^{-1} at 100, 200, 500, 1000, 2000 and 5000 mA g^{-1}
MoS ₂ /CNT network ¹⁸	1715 mAh g^{-1} at 200 mA g $^{-1}$	76.10%	1456 mAh g^{-1} after 50 cycles at 200 mA g^{-1}	1431, 1367, 1302 and 1224 mAh g^{-1} at 400, 600, 800 and 1000 mA g^{-1}
MoS _x /CNT ¹⁹	1549 mAh g^{-1} at 50 mA g $^{-1}$	74.80%	\geq 1000 mAh g ⁻¹ after 40 cycles at 50 mA g ⁻¹	1119, 904, 659, 358 and 197 mAh g^{-1} at 50, 200, 500 and 1000 mA g^{-1}
MoS ₂ -CNT film ²⁰	1117 mAh g^{-1} at 100 mA g^{-1}	73.40%	960 mAh g^{-1} after 100 cycles at 100 mA g^{-1}	$\begin{array}{c} 670 \ (3200) \\ 670 \ \text{mAh} \ \text{g}^{-1} \\ 3200 \ \text{mA} \ \text{g}^{-1} \end{array} \text{ at}$
Hollow MoS ₂ nanoparticles ²¹	1236 mAh g^{-1} at 100 mA g $^{-1}$	74%	902 mAh g^{-1} after 80 cycles at 100 mA g^{-1}	1030, 950, 910, 850 and 780 mAh g ⁻¹ at 100, 200, 300, 500

				and 1000 mA g^{-1}
$3D MoS_2$ assembly	1172 mAh g^{-1}		839 mAh g^{-1}	600 and 500 mAh
tubes ²²	at 100 mA σ^{-1}	68.30%	after 50 cycles at	g^{-1} at 1000 and
	at 100 milling		100 mA g^{-1}	5000 mA g^{-1}
MoS ₂ -graphene	1367 mAh σ ⁻¹		808 mAh g^{-1}	571 mAh σ^{-1} at
composites ²³	at 100 mA g^{-1}	66.70%	after 100 cycles	1000 mA s^{-1}
			at 100 mA g ⁻¹	1000 111 19
$PEO/MoS_2/graphene^2$	1150 mAh g ⁻¹		$\geq 1000 \text{ mAh } \text{g}^{-1}$	650 mAh g^{-1} at 200
4	at 50 mA g^{-1}	74%	after 180 cycles	$mA g^{-1}$
			at 50 mA g^{-1}	
$MoS_2/polyaniline^{25}$	1460 mAh g^{-1}		953 mAh g^{-1}	1006 mAh g^{-1} at
	at 100 mA g^{-1}	72.80%	after 50 cycles at	200 mA g^{-1}
26	C		100 mA g^{-1}	
MoS_2/C nanotube ²⁰	1320 mAh g^{-1}		776 mAh g^{-1}	450-600 mAh g^{-1} at
	at 200 mA g^{-1}	70.50%	after 100 cycles	1000 mA g^{-1}
			at 200 mA g ⁻¹	_
$MoS_2@carbon$	1020 mAh g^{-1}		750 mAh g ⁺	500 mAh g^{-1} at
spheres	at 100 mA g^{-1}	73.50%	after 50 cycles at 100 A^{-1}	1000 mA g^{-1}
\sim			100 mA g^{-1}	
$MoS_2@carbon layer^*$	1251 mAh g ⁻¹	00.70%	814 mAh g	$600 \text{ mAh } \text{g}^{-1}$ at
	at 1000 mA g^{-1}	90.70%	after 100 cycles $1000 \text{ m} \text{ A} \text{ s}^{-1}$	4000 mA g^{-1}
M_{2} $CMK 2^{28}$			at 1000 mA g	922 774 666 and
M052@CMK-5	$1056 \text{ mAb } a^{-1}$		$602 \text{ mAh } \text{g}^{-1}$	552 , 774, 000 and 564 mAb a^{-1} at 250
	1050 mAn g at 250 mA a^{-1}	78.03%	after 100 cycles	500 1000 and 2000
	at 250 mA g		at 250 mA g^{-1}	500, 1000 and 2000
Fe.O./MoS. ²⁹				1180 0/3 560 362
10304/10052			$1200 \text{ mAb } \text{g}^{-1}$	and 270 , 224 mAb
	1320 mAh g^{-1}	81 74%	after 560 cycles	and 270, 224 mAn a^{-1} at 1000 2000
	at 100 mA g^{-1}	01.7470	at 500 mA g^{-1}	4000 6000 8000
			at 500 mm g	and 10000 mA σ^{-1}
$M_0S_2/T_1O_2^{30}$				713 636 533 and
	931 mAh o ⁻¹		472 mAh g^{-1}	$461 \text{ mAh } \sigma^{-1} \text{ at } 100$
	at 100 mA g^{-1}	74%	after 100 cycles at 100 mA g^{-1}	200, 500 and 1000
				mA g^{-1}
				- 0

Figure S1 SEM images of GF (a), (b) and (c), and TEM image of GF.

Figure S2 (a) Low-magnification SEM of the CNT-GF, (b), (c) and (d) TEM of the CNTs. Inset in (d) shows the FFT pattern taken from the marked area.

Figure S3 SEM images of samples prepared with different concentration of reactants: (a) and (b) the $MoS_2@GF/CNTs$ sample prepared with 1.33 mg ml⁻¹ of TAA and 0.67 mg ml⁻¹ of sodium molybdate. (c) and (d) the $MoS_2@GF/CNTs$ sample prepared with 2 mg ml⁻¹ of TAA and 1 mg ml⁻¹ of sodium molybdate.

Figure S4 SEM and TEM images of samples prepared with different concentration of reactants: (a), (d) and (g) the $MoS_2@GF$ sample prepared with 2 mg ml⁻¹ of TAA and 1 mg ml⁻¹ of sodium molybdate. (b), (e) and (h) the $MoS_2@GF$ sample prepared with 3.33 mg ml⁻¹ of TAA and 1.67 mg ml⁻¹ of sodium molybdate. (c), (f) and (i) the $MoS_2@GF$ sample prepared with 4 mg ml⁻¹ of TAA and 2 mg ml⁻¹ of sodium molybdate.

Figure S5 SEM images of samples prepared with different concentration of reactants: (a) and (d) the $MoS_2@carbon cloth$ sample prepared with 1.67 mg ml⁻¹ of TAA and 0.83 mg ml⁻¹ of sodium molybdate. (b) and (e) the $MoS_2@carbon cloth$ sample prepared with 2 mg ml⁻¹ of TAA and 1 mg ml⁻¹ of sodium molybdate. (c) and (f) the $MoS_2@carbon cloth$ sample prepared with 3 mg ml⁻¹ of TAA and 1.5 mg ml⁻¹ of sodium molybdate.

Figure S6 SEM images of samples grown on different substrates prepared with 3 mg ml⁻¹ of TAA and 1.5 mg ml⁻¹ of sodium molybdate: (a) and (b) on the Ti foil. (c) and (d) on the stainless steel.

Figure S7 (a, b and c) Representative photograph showing the dimension and flexibility of the $MoS_2@GF/CNT$ electrode.

Figure S8 (a) SEM images of cross-sectional images of $MoS_2@GF/CNT$ branch. Corresponding elemental mapping images of C (b), S (c) and Mo (d), indicating the uniform covering of $MoS_2@CNTs$ on GF. And (e) EDS spectrum.

Figure S9 N₂ adsorption/desorption isotherms, and the insert corresponding pore size distribution of $MoS_2@GF$ composites prepared with 2.67 mg ml⁻¹ of sodium molybdate and 1.33 mg ml⁻¹ of TAA.

Figure S10 Charge and discharge curves of (a) $MoS_2@GF/CNT$ and (b) $MoS_2@GF$ at different C-rates. (c) Cycling behaviors of $MoS_2@GNF$ at current densities of 1000, 2000 and 5000 mAh g^{-1} .

Figure S11 (a) Charge and discharge curves and (b) cycling behavior of pure GF at a current density of 200 mAh g^{-1} .

Figure S12 (a) Charge and discharge curves and (b) cycling behavior of pure GF/CNT at a current density of 200 mAh g^{-1} .

Figure S13 TEM images of $MoS_2@GF/CNT$ electrode after cycling for 120 cycles.

Figure S14 Cross-section illustration of MoS_2 cluster bonding with (a) graphene and (b) CNT.

Figure S15 The relationship between the adsorption energies and diameters of CNTs.

Figure S16 The Raman spectra of E_{2g}^{1} and A_{1g} modes of (a) the MoS₂@GF taken at different five points and MoS₂ nanosheets.(b) the MoS₂@GF/CNT taken at five different points and MoS₂ nanosheets.

Electrode description	1st Specific capacity (mAhg ⁻¹)	1st Coulombic efficiency	Cycling stability (%)	Rate performance
MoS ₂ @GF/CNTs	1568 mAh g^{-1} at 100 mA g ⁻¹	79.8%	1125 mAh g^{-1} after 80 cycles at 200 mA g^{-1}	984, 927 and 820 mAh g^{-1} at 1000, 2000 and 5000 mA g^{-1}
MoS ₂ @GF	1502 mAh g^{-1} at 100 mA g ⁻¹	65.2%	798 mAh g^{-1} after 80 cycles at 200 mA g^{-1}	713, 664 and 565 mAh g^{-1} at 1000, 2000 and 5000 mA g^{-1}

Table S2 The comparison of electrochemical performances for two electrodes, $MoS_2@GF/CNTs$, and $MoS_2@GF$.

Sample	e	Active site	Diameter (nm)	Adsorption energy E _{ab} (meV)
CNT	(10, 10)	Т	1.3597	-24.2
	(12, 12)	Т	1.6272	-22.9
	(15, 15)	Т	2.0328	-21.2
	(18, 18)	Т	2.44	-20.1
	(25, 25)	Т	3.38	-19.1
Gr	aphene	Н		-18.7

Table S3 Calculated adsorption energies of MoS_2 cluster at various active sites of Graphene and CNT with different diameters. For all calculated models, one unit contains 20 MoS_2 units and 216 carbon atoms.

References for Supporting Information

- 1. J. Wang, J. Liu, D. Chao, J. Yan, J. Lin and Z. X. Shen, Adv Mater, 2014, 26, 7162-7169.
- D. B. Kong, H. Y. He, Q. Song, B. Wang, W. Lv, Q. H. Yang and L. J. Zhi, *Energy & Environmental Science*, 2014, 7, 3320-3325.
- 3. Zhu, X. Mu, P. A. van Aken, Y. Yu and J. Maier, *Angewandte Chemie International Edition*, 2014, **53**, 2152-2156.
- 4. C. B. Zhu, X. K. Mu, P. A. van Aken, J. Maier and Y. Yu, Adv. Energy Mater., 2015, 5, DOI:10.1002/aenm.201401170.
- 5. L. Zhang and X. W. Lou, Chemistry A European Journal, 2014, 20, 5219-5223.
- 6. H. Yu, C. Zhu, K. Zhang, Y. Chen, C. Li, P. Gao, P. Yang and Q. Ouyang, *Journal of Materials Chemistry A*, 2014, **2**, 4551-4557.
- 7. X. Cao, Y. Shi, W. Shi, X. Rui, Q. Yan, J. Kong and H. Zhang, Small, 2013, 9, 3433-3438.
- 8. K. Chang and W. Chen, Chemical Communications, 2011, 47, 4252-4254.
- 9. K. Chang and W. Chen, ACS Nano, 2011, 5, 4720-4728.
- K. Chang, W. Chen, L. Ma, H. Li, H. Li, F. Huang, Z. Xu, Q. Zhang and J.Y. Lee, *Journal of Materials Chemistry*, 2011, 21, 6251-6257.
- 11. S. Ding, J. S. Chen and X. W. Lou, *Chemistry A European Journal*, 2011, **17**, 13142-13145.
- S. K. Das, R. Mallavajula, N. Jayaprakash and L. A. Archer, *Journal of Materials Chemistry*, 2012, 22, 12988-12992.
- 13. S. Ding, D. Zhang, J. S. Chen and X. W. Lou, Nanoscale, 2012, 4, 95-98.
- 14. Y. Gong, S. Yang, Z. Liu, L. Ma, R. Vajtai and P. M. Ajayan, *Advanced Materials*, 2013, 25, 3979-3984.
- 15. H. Hwang, H. Kim and J. Cho, Nano Letters, 2011, 11, 4826-4830.
- 16. H. Li, W. Li, L. Ma, W. Chen and J. Wang, Journal of Alloys and Compounds, 2009, 471, 442-447.
- 17. H. Liu, D. Su, R. Zhou, B. Sun, G. Wang and S. Z. Qiao, Advanced Energy Materials, 2012, 2, 970-975.
- 18. C. Lu, W.W. Liu, H. Li and B. K. Tay, Chemical Communications, 2014.
- 19. Y. Shi, Y. Wang, J. I. Wong, A. Y. S. Tan, C.L. Hsu, L.J. Li, Y.C. Lu and H. Y. Yang, *Sci. Rep.*, 2013, **3**.
- 20. J. Z. Wang, L. Lu, M. Lotya, J. N. Coleman, S.L. Chou, H.K. Liu, A. I. Minett and J. Chen, *Advanced Energy Materials*, 2013, **3**, 798-805.
- 21. M. Wang, G. Li, H. Xu, Y. Qian and J. Yang, ACS Appl Mater Interfaces, 2013, 5, 1003-1008.
- 22. P. P. Wang, H. Sun, Y. Ji, W. Li and X. Wang, Adv Mater, 2014, 26, 964-969.
- 23. Z. Wang, T. Chen, W. Chen, K. Chang, L. Ma, G. Huang, D. Chen and J. Y. Lee, *Journal of Materials Chemistry A*, 2013, 1, 2202-2210.
- 24. J. Xiao, X. J. Wang, X. Q. Yang, S. D. Xun, G. Liu, P. K. Koech, J. Liu and J. P. Lemmon, *Advanced Functional Materials*, 2011, **21**, 2840-2846.
- L. Yang, S. Wang, J. Mao, J. Deng, Q. Gao, Y. Tang and O. G. Schmidt, *Advanced Materials*, 2013, 25, 1180-1184.
- 26. C. Zhang, Z. Wang, Z. Guo and X. W. Lou, ACS Applied Materials & Interfaces, 2012, 4, 3765-3768.
- 27. X. Zhao, C. Hu and M. Cao, Chemistry An Asian Journal, 2013, 8, 2701-2707.

- 28. X. S. Zhou, L. J. Wan and Y. G. Guo, Nanoscale, 2012, 4, 5868-5871.
- 29. Y. Chen, B. Song, X. Tang, L. Lu and J. Xue, Small, 2014, 10, 1536-1543.
- 30. X. Xu, Z. Fan, S. Ding, D. Yu and Y. Du, Nanoscale, 2014.