Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting Information

The Role of Oxygen Vacancies in Improving the Performance of CoO

as Bifunctional Cathode Catalyst for Rechargeable Li-O₂ Batteries

Rui Gao^a, Lei Liu^a, Zhongbo Hu^a, Peng Zhang^b, Xingzhong Cao^b, Baoyi Wang^b,

Xiangfeng Liu^a*

^a College of Materials Science and Opto-Electronic Technology, University of

Chinese Academy of Sciences, Beijing 100049, China

^b Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics,

Chinese Academy of Sciences

Supporting Figures

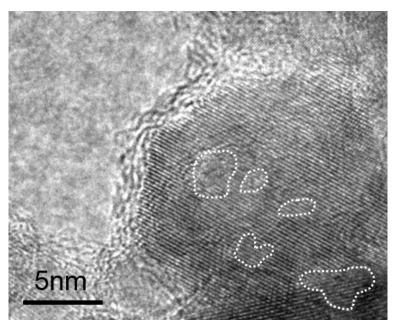


Figure S1. The HRTEM images of CoO-A. The blurred areas (circled) and the rough

edges of CoO nanocrystals indicate the presence of surface defects

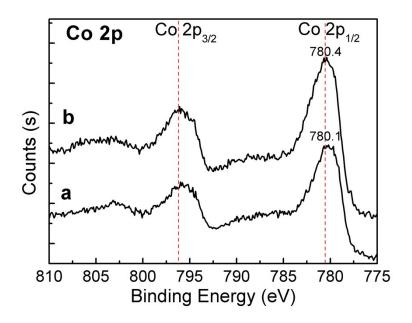
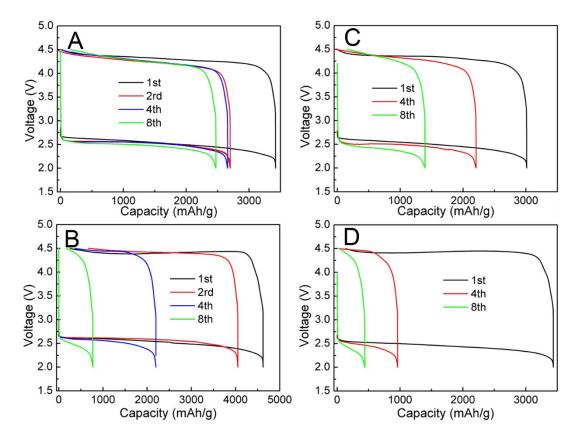



Figure S2. XPS spectra of CoO-A (a) and CoO-N (b). Two main peaks can be seen at \sim 780 eV and 796 eV, which can be attributed to Co (Co²⁺) 2p3/2 and 2p1/2, respectively.

Figure S3 A, B) The full discharge-charge profiles of CoO-A (A) and CoO-N (B) at the current density of 200mA·g⁻¹. C, D) The full discharge-charge profiles of CoO-A (C) and CoO-N (D) at the current density of 400mA·g⁻¹.

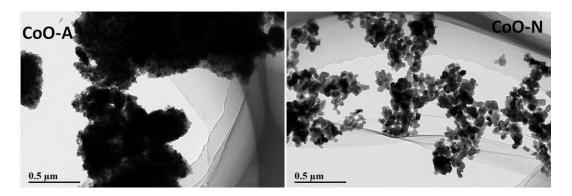


Figure S4. TEM images of CoO-A and CoO-N under a low magnification. The particles of CoO-A show a seriuos aggregation.

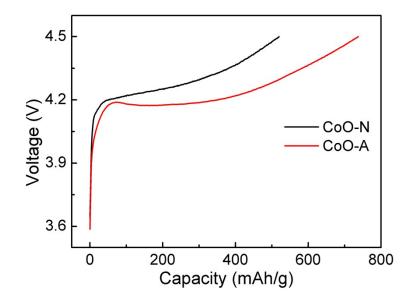


Figure S5. The the charge-only profile for batteries catalyzed by CoO-A and CoO-N at the current density of $200\text{mA}\cdot\text{g}^{-1}$. The ratio of carbon, CoO, binder and Li_2O_2 is 3:4:1:2