Supporting Information

Thermodynamic Regulation of CH₃NH₃PbI₃ Crystal Growth and

Its Effect on Photovoltaic Performance of Perovskite Solar Cell

Namyoung Ahn^{1†}, Seong Min Kang^{1†}, Jin-Wook Lee², Mansoo Choi^{1,*} and Nam-Gyu Park^{2,*}

¹Department of Mechanical and Aerospace Engineering, Seoul National University Seoul 151-742, Korea ²School of Chemical Engineering and Department of Energy Science Sungkyunkwan University, Suwon 440-746, Korea

Derive equation of thermodynamic MAPbI₃ reaction process.

From the relation (8) in the manuscript, we could derive a logarithmic formula by introducing constant C'.

$$lnY(grain \ size) = \frac{\hat{a}^{\uparrow} + G_c}{3kT} + C'$$

Substituting equation (7), we could derive a formula about relationship between grain size and concentration.

$$lnY = \frac{1}{3kT} \frac{32}{\left(\frac{kT}{V_M} ln\frac{C}{C_0}\right)^2} + C'$$

Finally, the equation could be obtained by replacing concentration C with X.

$$lnY = \frac{32 \ddot{I} f_{sl}^{3}}{3kT (\frac{kT}{V_{m}} (lnX - lnC_{0}(T)))^{2}} + C'$$

Here, the equation was summarized as a simple formula with substitution other terms to constant, except for concentration.

$$lnY = \frac{B}{\left(lnX - A\right)^2} + C$$

It would be assumed that the equilibrium concentration is 0.02 M of MAI solution at room temperature since the PbI_2 film could not react with 0.02 M of MAI solution. In this manner, a value of A would be -3.19, which means natural log value of equilibrium constant. The other value of B and C were mathematically evaluated in order that the model was fitted with an actual data in Table S1, as result, B and C were 1.22 and 3.73 respectively (see Figure 3).

Table S1. Grain sizes, short-circuit photocurrent density (J_{sc}) , open-circuit voltage (V_{oc}) , fill factor (FF) and power conversion efficiency (PCE) versus MAPbI₃ concentration. Data were taken from reference S1.

MAI Concentration	0.038 M	0.044 M	0.050 M	0.057 M	0.063 M
Grain Size (nm)	720	360	190	130	90
J_{sc} (mA/cm ²)	21.68	-	21.01	-	19.27
$V_{oc}(V)$	1.065	-	1.090	-	1.080
FF	0.709		0.711	-	0.646
PCE (%)	16.36		16.27	-	13.45

	0.038M	0.044M	0.050M	0.057M	0.063M	
- 10 °C				N	lost bright cel	I
20 ° C						Large gr
50 ℃	Most dark cel					ain size
		Large gra	in size			

Figure S1. Photograph of $MAPbI_3$ coated substrates depending on MAI concentrations and reaction temperature.

References

S1. J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel and N.-G. Park, Nat. Nanotechnol., 2014, 9, 927-932.