Supplementary information

A facile approach to alleviate photochemical degradation in high efficiency polymer solar cells

Wenchao Huang,^a Eliot Gann,^{ab} Zai-quan Xu,^{ac} Lars Thomsen,^b Yi-Bing Cheng^{a*} and Christopher R. McNeill^{a*}

a. Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, VIC 3800 Australia

b. Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168 Australia

c. The Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton 3168, Victoria, Australia

Corresponding author: yibing.cheng@monash.edu, christopher.mcneill@monash.edu

Table S1. Comparison of Integrated EQE values with short circuit currents.

	Jsc (mA/cm ²)	Integrated EQE (mA/cm ²)
Conventionally prepared	17.3	16.3
Anti-solvent treated	18.3	16.7

Table S2 Protocol for stability test

Light source	Ambient room lighting (fluorescent tubes)		
Temperature	Ambient (Room temperature ~25°C)		
Relative humidity	Ambient		
Environment	Ambient		
Characterization light source	Solar simulator (AM 1.5)		
	The intensity is calibrated by a standard		
	silicon cell		
Load	Open circuit		
Storage	On the bench		

Fig.S1 Photos of conventionally prepared device stored in the ambient atmosphere after (a) 30 days (b) 60days

Fig.S2 Photovoltaic characterizations of device treated with different solvents.

Table S3 Photovoltaic parameters of organic solar cells constructed on PBDTTT-EFT/PC₇₁BM blends, treated with different solvent

Device type	$V_{OC}(V)$	J _{SC} (mA/cm ²)	FF	PCE (%) (average)
Control	0.80	17.3	0.67	9.3% (9.1%)
IPA treated	0.79	18.3	0.62	9.0% (8.5%)
MeOH treated	0.79	18.1	0.57	8.2% (7.9%)
EtOH treated	0.78	17.8	0.54	7.5% (7.1%)

Fig.S3 The degradation of PBDTTT-EFT/PC₇₁BM blend films (a) conventionally prepared film and (b) anti-solvent treated film.

Fig.S4 2D GIWAXS images of (a) fresh PBDTTT-EFT/PC₇₁BM films and (b) PBDTTT-EFT/PC₇₁BM films under air and light exposure for 1 day. (c) out-of-plane (OOP) and inplane (IP) line profiles of GIWAXS patterns.

Fig.S5 UV-vis spectra of pristine PBDTTT-EFT processed with DIO followed by antisolvent treatment as function of ageing time.

Fig.S6 UV-vis spectra of pristine PBDTTT-EFT. The increased absorption of pristine polymer film after vacuum is attributed by the evaporation of DIO. The same sample treated with anti-solvent treatment exhibits a further increase in absorption, indicating the DIO was not fully removed by vacuum.

Fig.S7 Photovoltaic characterization of the polymer blend processed without DIO. (a) current-voltage (J-V) curve (b) normalized efficiency as a function of time.

		Peak location	D-spacing	FWHM	Coherence length
		(Å-1)	(nm)	(Å-1)	(nm)
Conventional	OOP(010)	1.52	0.41	0.283	2.22
prepared	IP (100)	0.30	2.09	0.079	7.95
Anti-solvent	OOP(010)	1.52	0.41	0.291	2.16
treated	IP (100)	0.30	2.09	0.082	7.66

Table S4. Fitted parameters for the GIWAXS profiles.

Fig.S8 Scattering contrast between polymer PBDTTT-EFT and PC₇₁BM.

Fig.S9 AFM topography images of (a) convetionally prepared PBDTTT-EFT:PC₇₁BM blend and (b) anti-solvent treated PBDTTT-EFT:PC₇₁BM blend.

Fig.S10 Angle-resolved carbon K-edge NEXAFS spectra of (a) conventionally prepared and (b) anti-solvent treated PBDTTT-EFT/PC₇₁BM blend.

Fig.S11 Statistic data for device efficiency (20 devices) of (a) convetionally prepared PBDTTT-EFT:PC₇₁BM blend and (b) anti-solvent treated PBDTTT-EFT:PC₇₁BM blend.