Supporting Information

Photocatalytic Hydrogen Generation on Bifunctional Ternary Heterostructured In₂S₃/MoS₂/CdS Composite with High Activity and Stability under Visible Light Irradiation

Wenjun Jiang, Yanfang Liu, Ruilong Zong, Zhanping Li, Wenqing Yao and Yongfa Zhu*

Department of Chemistry, Tsinghua University, Beijing 100084, China E-mail: zhuyf@mail.tsinghua.edu.cn

Fig. S1 FESEM images of (a) pure CdS nanorods, (b) pure MoS_2 , (c) pure In_2S_3 , (d) MoS_2/CdS heterostructures (0.2 wt% of MoS_2), (e) In_2S_3/CdS heterostructures (20 wt% of In_2S_3), (f) $In_2S_3/CdS/MoS_2$ heterostructures (0.2 wt% of MoS_2 and 20 wt% of In_2S_3) and (g) $In_2S_3/MoS_2/CdS$ heterostructures (0.2 wt% of MoS_2 and 20 wt% of In_2S_3 .

As shown in Fig. S1a-S1c, pure CdS, MoS₂ and In₂S₃ are nanorods, thin flakes and blocky structure, respectively. However, the morphology of the pure In₂S₃ in the TEM image (Fig. 2c) is nanowire. The reason is that the sample in the TEM image is ultrasonic dispersed and spontaneously assembled nanowires, while the sample in the SEM image is not pretreated. Fig. S1d-S1e shows the FESEM images of the binary heterostructures. In MoS₂/CdS, a small amount of MoS₂ is coated on the surface of the CdS nanorods (insert of Fig. S1d), which forms the MoS₂/CdS heterostructures. In In₂S₃/CdS heterostructures, 20% of In₂S₃ is coated on the surface of the CdS nanorods (insert of Fig. S1e), forming the In₂S₃/CdS heterostructures. Fig. 2f-2g shows the FESEM image of the ternary heterostructures. As the resolution ratio of FESEM is not so high, MoS₂ could not be found easily.

Fig. S2 (a) XPS survey spectra and (b-f) high-resolution XPS spectra of the C1s, S2p, Cd3d, In3d and Mo3d of the $In_2S_3/MoS_2/CdS$ heterosructures.

Fig. S3 (a) Rate of H_2 evolution on pure CdS nanorods in the presence of different sacrificial reagents. (b) Rate of H_2 evolution from lactic acid solution on MoS_2/CdS binary heterostructured photocatalysts with different MoS_2 content. Reaction conditions: catalyst, 0.05 g; 100 ml solution containing 10 ml sacrificial reagent; light source (300W Xe Lamp) with a cutoff filter (λ >420 nm).

Fig. S4 TEM images of (a) pure CdS nanorods, (b) MoS_2/CdS heterostructures, (c) In_2S_3/CdS heterostructures, (d) $In_2S_3/CdS/MoS_2$ heterostructures and (e) $In_2S_3/MoS_2/CdS$ heterostructures before and after reaction.

Fig. S5 Schematic illustration of the charge transfer and separation on the MoS_2/CdS , In_2S_3/CdS , $In_2S_3/CdS/MoS_2$ and $In_2S_3/MoS_2/CdS$ heterostructures under visible light.