Electronic Supplementary Information

Synthesis and Evaluation of Porous Azo-Linked Polymers for Carbon Dioxide Capture and Separation

Pezhman Arab, Emily Parrish, Timur Islamoglu, and Hani M. El-Kaderi*

Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-

2006, United States

*To whom correspondence should be addressed. Email: helkaderi@vcu.edu

Contents

	Page
Table S1 (optimization of catalyst amount for ALP-7)	<i>S3</i>
FT-IR spectroscopy analysis	S4-S 7
Solid state ¹³ C CP-MAS NMR analysis	S8-S11
Scanning electron microscopy (SEM) imaging	S12-S13
Powder X-ray diffraction (XRD) analysis	<i>S14</i>
Thermogravimetric analysis (TGA)	<i>S</i> 15
BET plots	<i>S16</i>
Langmuir plots	<i>S17</i>
Pore size distribution of ALPs	<i>S18</i>
Low pressure $(0 - 1.0 \text{ bar})$ gas uptake isotherms of ALPs at 298 K	<i>S19</i>
Table S2 (comparison of porosity parameters of ALPs)	<i>S20</i>
Table S3 (gas uptakes and Q_{st} of ALPs)	<i>S21</i>
Table S4 (comparison of porous azo-linked polymers for CO_2 capture)	<i>S22</i>
Virial fittings	S23-S24
Langmuir-Freundlich fittings for gas isotherms	S25-S28
High-pressure (1-10 bar) gas uptake of ALPs at 298 K	S29-S30
Table S5 (IAST selectivity of different classes of azo-linked porous polymers)	<i>S31</i>
Initial slope selectivity studies of ALPs	S32-S36

Entry	CuBr (mg)	Pyridine (mg)	Surface area (m ² g ⁻¹) ^b
1	20	80	60
2	40	160	400
3	80	320	100
4	80	160	390
5	60	160	380
6	60	120	240
7	40	120	370
8	30	80	230

Table S1. The effect of amount of catalyst on surface area of ALP-7.^a

^{*a*}Reaction conditions: monomer (100 mg), THF (11 ml), toluene (11 ml), stirred at 25 °C for 24 h, at 60 °C for 12 h, and at 80 °C for 12 h. ^{*b*}BET surface areas were calculated from N_2 adsorption isotherms collected by NOVA (*Quantachrome*).

Fig. S1 FT-IR spectra of ALP-5 and its corresponding monomer (TASBF).

Fig. S3 FT-IR spectra of ALP-7 and its corresponding monomer (TAPA).

Fig. S4 FT-IR spectra of ALP-8 and its corresponding monomer (TAPE).

Fig. S5 Solid state ¹³C CP-MAS NMR spectrum of ALP-5. Asterisks denote spinning side-bands.

Fig. S6 Solid state ¹³C CP-MAS NMR spectrum of ALP-6. Asterisks denote spinning side-bands.

Fig. S7 Solid state ¹³C CP-MAS NMR spectrum of ALP-7. Asterisks denote spinning side-bands.

Fig. S8 Solid state ¹³C CP-MAS NMR spectrum of ALP-8. Asterisks denote spinning side-bands.

Fig. S9 SEM image of ALP-5.

Fig. S10 SEM image of ALP-6.

Fig. S11 SEM image of ALP-7.

Fig. S12 SEM image of ALP-8.

Fig. S13 PXRD pattern of ALPs.

Fig. S17 Pore size distribution of ALPs calculated from Ar adsorption branch using NLDFT (spherical/cylindrical model).

Fig. S18 CO_2 , CH_4 , and N_2 adsorption isotherms of ALPs at 298 K.

Polymer	SA $_{\rm BET}a$	Dominant pore size $(nm)^b$	Total Pore Volume ^c	Ref.	
ALP-1	1235	1.0	0.66	1	
ALP-2	1065	1.1	0.57	1	
ALP-3	975	1.3	0.63	1	
ALP-4	862	1.1	0.50	1	
ALP-5	801	0.80	0.39	This Work	
ALP-6	698	0.85	0.36	This Work	
ALP-7	412	0.90	0.27	This Work	
ALP-8	517	0.92	0.25	This Work	
^{<i>a</i>} Surface area (m ² g ⁻¹) calculated from the Ar adsorption branch according to the BET model. ^{<i>b</i>} Pore size distributions (PSDs) were estimated from the adsorption branch of the Ar					

 Table S2. Porosity parameters for ALPs.

isotherms by NLDFT. ^cThe total pore volume (cm³ g⁻¹) calculated from single point Ar uptake at P/Po= 0.90.

Polymer	CO_2 Uptake at 1 bar ^{<i>a</i>}		CH ₄ Uptake at 1 bar ^a		N ₂ Uptake at 1 bar ^{a}		Pof		
rorymer	273 K	298 K	Q_{st}^{b}	273 K	298 K	Q_{st}^{b}	273 K	298 K	Ker.
ALP-1	5.4	3.3	29.2	1.6	0.94	20.8	0.41	0.21	1
ALP-2	4.8	2.4	27.9	1.1	0.67	18.5	0.31	0.14	1
ALP-3	3.8	2.3	29.6	1.1	0.60	21.0	0.25	0.12	1
ALP-4	3.5	1.8	28.2	0.89	0.52	21.2	0.24	0.12	1
ALP-5	4.5	2.9	32.5	1.4	0.85	22.4	0.40	0.18	This Work
ALP-6	3.4	2.2	28.6	1.0	0.60	19.0	0.25	0.10	This Work
ALP-7	2.5	1.5	30.7	0.73	0.40	22.2	0.19	0.06	This Work
ALP-8	3.0	2.0	29.4	0.90	0.53	20.0	0.21	0.10	This Work
^{<i>a</i>} Uptake in mmol g ⁻¹ . ^b Isosteric enthalpies of adsorption (Q_{st}) in kJ mol ⁻¹ at zero coverage.									

Table S3. CO₂, CH₄, and N₂ uptakes, and isosteric heats of adsorption (Q_{st}) for ALPs.

Polymer	Surface area ^{<i>a</i>}	CO ₂ uptakeat 1 bar ^b		Q_{st} for CO_2^c	Reference
		273 K	298 K		
ALP-1	1235	5.4	3.3	29.2	1
ALP-2	1065	4.8	2.4	27.9	1
ALP-3	975	3.8	2.3	29.6	1
ALP-4	862	3.5	1.8	28.2	1
ALP-5	801	4.5	2.9	32.5	This Work
ALP-6	698	3.4	2.2	28.6	This Work
ALP-7	412	2.5	1.5	30.7	This Work
ALP-8	517	3.0	2.0	29.4	This Work
azo-COP-1	635	2.4	1.5	29.3	2
azo-COP-2	729	2.6	1.5	24.8	2
azo-COP-3	493	1.9	1.2	32.1	2
azo-POF-1	712	3.0	1.9	27.5	3
azo-POF-2	439	1.9	1.3	26.6	3

Table S4. Surface area, CO₂ uptake, and isosteric heat of adsorption of porous azo-linked polymers.

^{*a*}Surface area (m² g⁻¹) calculated based on the BET model. ^{*b*}CO₂ uptake in mmol g⁻¹. ^{*c*}Isosteric heat of adsorption (Q_{st}) at zero coverage in kJ mol⁻¹.

Fig. S20 Virial fitting for CH₄ isotherms of ALPs.

Fig. S21 Experimental data and corresponding fittings of gas isotherms for ALP-5. (Dual site Langmuir-Freundlich for CO_2 , and single site Langmuir-Freundlich for CH_4 and N_2 with temperature dependent parameter at 273 and 298 K).

Fig. S22 Experimental data and corresponding fittings of gas isotherms for ALP-6. (Dual site Langmuir-Freundlich for CO_2 , and single site Langmuir-Freundlich for CH_4 and N_2 with temperature dependent parameter at 273 and 298 K).

Fig. S23 Experimental data and corresponding fittings of gas isotherms for ALP-7. (Dual site Langmuir-Freundlich for CO_2 , and single site Langmuir-Freundlich for CH_4 and N_2 with temperature dependent parameter at 273 and 298 K).

Fig. S24 Experimental data and corresponding fittings of gas isotherms for ALP-8. (Dual site Langmuir-Freundlich for CO_2 , and single site Langmuir-Freundlich for CH_4 and N_2 with temperature dependent parameter at 273 and 298 K).

Polymer	CO ₂ /N ₂ selectivity at 1 bar		Reference
	273 K	298 K	
ALP-1 ^a	40	28	1
ALP- 2^a	34	26	1
ALP-3 ^a	44	35	1
ALP- 4^a	35	26	1
ALP- 5^b	60	47	This Work
ALP-6 ^{<i>b</i>}	45	48	This Work
ALP-7 ^{b}	52	56	This Work
ALP- 8^b	51	44	This Work
azo-COP-1 ^a	64	97	2
azo-COP-2 ^a	110	131	2
azo-COP-3 ^a	79	96	2
azo-POF-1 ^a	52	37	3
azo-POF- 2^a	55	42	3

Table S5. IAST selectivity of different classes of azo-linked porous polymers.

 $^{\it a}$ For CO₂:N₂ mole ratio of 15:85. $^{\it b}$ For CO₂:N₂ mole ratio of 10:90.

Fig. S27 Gas uptakes and initial slope selectivity studies of ALP-5.

Fig. S28 Gas uptakes and initial slope selectivity studies of ALP-6.

Fig. S29 Gas uptakes and initial slope selectivity studies of ALP-7.

Fig. S30 Gas uptakes and initial slope selectivity studies of ALP-8.

Polymer	CO ₂ /N ₂ Selectivity ^a		CO ₂ /CH	4 Selectivity ^a	Reference
	273 K	298 K	273 K	298 K	
ALP-1	35	27	6	5	1
ALP-5	51	41	9	7	This Work
ALP-6	46	47	8	6	This Work
ALP-7	47	43	8	7	This Work
ALP-8	48	48	8	6	This Work

Table S6. Initial slope selectivity of ALPs.

 $a \pmod{\text{mol}^{-1}}$.

References

- 1. P. Arab, M. G. Rabbani, A. K. Sekizkardes, T. İslamoğlu and H. M. El-Kaderi, *Chem. Mater.*, 2014, **26**, 1385-1392.
- 2. H. A. Patel, S. H. Je, J. Park, D. P. Chen, Y. Jung, C. T. Yavuz and A. Coskun, *Nat. Commun.*, 2013, **4**, 1357.
- 3. J. Lu and J. Zhang, J. Mater. Chem. A., 2014, 2, 13831-13834.