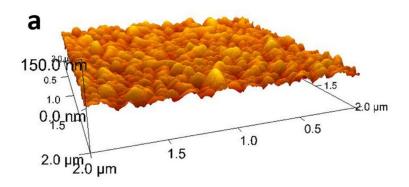
Electronic supplementary information

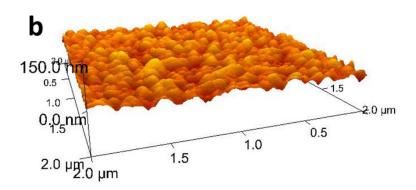
Efficient planar perovskite solar cells using room-temperature vacuum-processed C_{60} electron selective layers

Weijun Ke,‡^{ab} Dewei Zhao,‡^b Corey R. Grice,^b Alexander J. Cimaroli,^b Jie Ge,^b Hong Tao,^a Hongwei Lei,^a Guojia Fang*^a and Yanfa Yan*^b

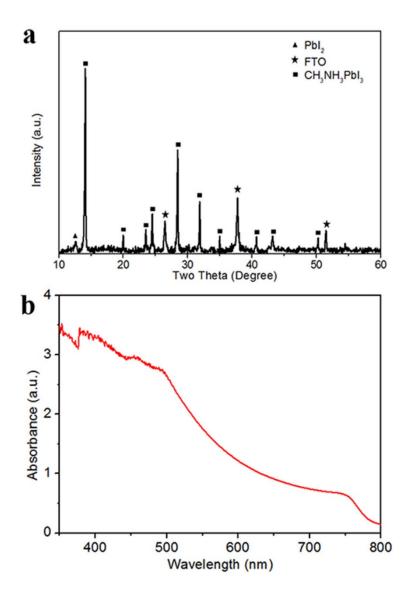
- ^a Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, China. E-mail: gjfang@whu.edu.cn
- b Department of Physics and Astronomy and Wright Center for Photovoltaics
 Innovation and Commercialization, The University of Toledo, Toledo, OH 43606,
 USA. E-mail: yanfa.yan@utoledo.edu

‡These authors contributed to this work equally.

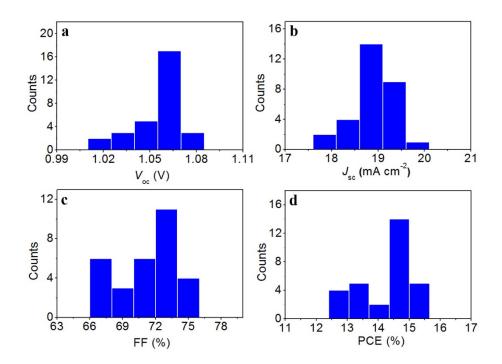

Experimental Section


Device Fabrication:

The Vacuum-processed C₆₀ (Luminescence Technology Co., Ltd, >99.5%) electron selective layers were deposited on FTO coated soda-lime glass substrates by thermal evaporation at a rate of 0.02 nm/s. The different thicknesses of the C₆₀ films were controlled by the deposition time. The solution-processed C₆₀ electron selective layers were prepared by spin-coating method, according to the literature reports. 460 mg/mL PbI₂ (Sigma, 99.999%) dissolved in DMF was stirred at 60 °C for 24h. Perovskite CH₃NH₃PbI₃ films were prepared by a typical two-step dip-coating method.² FTO substrates were heated on a hotplate at 60 °C for 30min. The hot PbI₂ solution was quickly applied drop-wise and spin-coated on the FTO substrates without and with the C₆₀ interface layers at 500 rpm for 1s and then 3000 rpm for 30 s. The substrates covered with the PbI_2 films were annealed at $100\ ^{\circ}C$ for $10\ min.$ The dried PbI_2 films were dipped into a solution of 200 mg CH₃NH₃I dissolved in 20 ml 2-propanol at 55 °C for 5 min and then were quickly rinsed with clean 2-propanol. The films were finally annealed at 100 °C for 10 min. The finished perovskite films were spin-coated with a solution of electron blocking material at 500 rpm for 1s and then 6000 rpm for 60 s. The electron blocking material consisted of 26 mM Li-TFSI (Sigma, 99.95%), 55 mM TBP (Sigma, 96%), and 68 mM spiro-OMeTAD (Shenzhen Feiming Science and Technology Co., Ltd., 99.0%) dissolved in a mixed solvent of chlorobenzene and acetonitrile with a volume ratio of 10:1. The devices were finally completed by evaporating 60 nm Au electrodes. The active areas of the cells defined by the Au electrodes were 0.08 cm².


Film and Device Characterization:

The crystal structure of the prepared $CH_3NH_3PbI_3$ film on the FTO substrates covered with a C_{60} interface layer was examined by XRD (Rigaku Ultima III) with Cu K α radiation under operation conditions of 40 kV and 44 mA. Absorption spectrum of the perovskite $CH_3NH_3PbI_3$ film on the substrate covered with a C_{60} interface layer and transmission spectra of the substrates without and with a C_{60} interface layers in different thicknesses were measured by an ultraviolet–visible spectrophotometer (CARY5000, Varian, Australia). AFM images of the substrates without and with a C_{60} interface layer were characterized by a Vecco Nanoscope IIIA instrument. The morphologies of the device and the perovskite film were characterized by a high-resolution field emission SEM (Hitachi S-4800). V_{oc} decay curves and QE spectra were performed on an electrochemical workstation (Solartron Modulab) and a QE system (PV Measurements Inc.), respectively. All the J-V curves were measured by a Keithley Model 2400 under



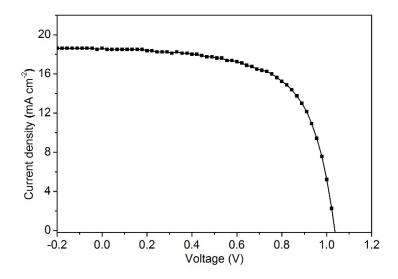

Fig. S1. AFM images of 3-dimensional patterns of the FTO substrates (a) without and (b) with a 7.5 nm C_{60} interface layer.

Fig. S2. (a) XRD pattern and (b) ultraviolet–visible absorbance spectrum of a perovskite film on an FTO substrate covered with a 7.5 nm C_{60} interface layer.

Fig. S3. Histograms of (a) V_{oc} 's, (b) J_{sc} 's, (c) FFs, and (d) PCEs for 30 cells using the vacuum-processed C_{60} electron selective layers measured under reverse voltage scanning.

Fig. S4. J-V curve of the best-performing perovskite solar cell using a solution-processed C_{60} electron selective layer measured under reverse voltage scanning.

References

- K. Wojciechowski, T. Leijtens, S. Spirova, C. Schlueter, M. Hoerantner, J. T.-W. Wang, C.-Z. Li, A. K.-Y. Jen, T.-L. Lee and H. J. Snaith, *J. Phys. Chem. Lett.*, 2015, 6, 2399–2405.
- 2. W. Ke, G. Fang, J. Wang, P. Qin, H. Tao, H. Lei, Q. Liu, X. Dai and X. Zhao, *ACS Appl. Mater. Interfaces*, 2014, **6**, 15959-15965.