Electronic Supplementary Information

Synthesis and Characterization of $(Ga_{1-x}Zn_x)(N_{1-x}O_x)$ Nanocrystals with a Wide Range of Compositions

Kyureon Lee,[†] Ying-Gang Lu,[†] Chi-Hung Chuang,[†] Jim Ciston,[#] Gordana Dukovic[†]*

[†]Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States

[#]National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

Figure S1. Fitting of XRD patterns of the nitrided products for 0-16 hours at 650 °C from a starting material mixture with Zn/(Zn+Ga)=0.39.

Figure S2. Low-magnification TEM images of the nitrided products for 0-16 hours at 650 °C from a starting material mixture with Zn/(Zn+Ga)=0.39.

Figure S3. (a) Powder XRD patterns, (b) (100) peak position, (c) Elemental analysis from ICP-OES, and (d) Diffuse reflectance spectra (normalized at 350 nm) of the products from nitridation of a starting mixture (Zn/(Zn+Ga)=0.78).

As shown in Figure S3, ZnO-rich starting mixture (Zn/(Zn+Ga)=0.78) was nitrided for 0 - 16 hours. The XRD patterns of each nitrided product show that the spinel peaks of $ZnGa_2O_4$ in the starting mixture quickly disappear, and the (100) peak of ZnO shifts to higher angle in 2 hours of nitridation, resulting from the conversion of spinel ZnGa₂O₄ and wurtzite ZnO to wurtzite $(Ga_{1-x}Zn_x)(N_{1-x}O_x)$, similar to what we observed from the x=0.39 sample set described in the manuscript. The shift of the wurtzite (100) peak was not drastic in this ZnO-rich sample set since the starting mixture contains much smaller amount of $ZnGa_2O_4$ than that in the x=0.39 sample set. Zn loss appeared to be significant (on the order of 10%) after 2 hours of nitridation in the x=0.78 synthesis, which leads to the changes of the (100) peak position observed after 2 hours. The Zn loss is caused by reduction of ZnO to Zn under ammonia atmosphere, and subsequent volatilization of the Zn. This results in the peak shift towards GaN observed after 2 hours. In the diffuse reflectance spectra of the nitrided products, the absorption onsets rapidly shift to lower energy as the spinel $ZnGa_2O_4$ and wurtzite ZnO convert to wurtzite $(Ga_{1-r}Zn_r)(N_{1-r}Zn_r)$ $_{x}O_{x}$) in the same time period. In conclusion, the observations from both ZnO-low and ZnO-rich sample sets reveal the consistent reaction mechanism where the conversion of spinel $ZnGa_2O_4$ to wurtzite occurs upon topotactic nucleation at a ZnO/ ZnGa₂O₄ interface, and this results in the red shift of absorption onsets.

Figure S4. Low magnification TEM images of $(Ga_{1-x}Zn_x)(N_{1-x}O_x)$, (x=0.06, 0.24, 0.91, and 0.98).

Figure S5. XPS spectra of the $(Ga_{1-x}Zn_x)(N_{1-x}O_x)$ with x = 0.40, 0.52, 0.76, and 0.93 for (a) $Zn2p_{3/2}$, (b) O1s, (c) $Ga2p_{3/2}$, and (d) N1s. (e) Binding energy of lattice oxygen (red) and nitrogen in nitride (N³⁻) versus the *x* value.

Figure S5 shows the high-resolution XPS spectra for the O1s and N1s peaks of $(Ga_{1,x}Zn_x)(N_{1,x}O_x)$ with x=0.40, 0.52, 0.76, and 0.93. The $Zn2p_{3/2}$ peaks of the $(Ga_{1,x}Zn_x)(N_{1,x}O_x)$ appear at almost the same binding energy (1021.4–1021.5 eV) regardless of the composition, which is lower than the reference value of ZnO (1022.0 eV¹) as shown in Figure S5a. This indicates that Zn in $(Ga_{1,x}Zn_x)(N_{1,x}O_x)$ has more electron density than in ZnO. The same behavior was observed in bulk $(Ga_{1,x}Zn_x)(N_{1,x}O_x)$ and was attributed to the presence of Zn-N bonding and

lower electronegativity of N than O.² The O1s peaks in Figure S5b were deconvoluted into two peaks that can be assigned to a crystal lattice oxygen (530.18-530.73 eV) and surface -OH group (531.13–531.37 eV).² The peaks of the lattice oxygen appear at lower energies with increasing x, as shown in Figure S5e. The peak shift with composition suggests the existence of Ga-O bonds as well as Zn-O bonds in the lattice and the amount of each bonding changes with the composition. Higher x samples contain less Ga-O bonding and more Zn-O bonding, leading to the movement of more electron density towards O due to lower electronegativity of Zn than Ga (electronegativity: 1.65 for Ga; 1.81 for Zn based on Pauling scale).³ For Ga2p_{3/2} peaks (Figure S5c), all the samples show similar peak position at 1117.1–1117.3 which are consistent with $Ga2p_{3/2}$ in GaN (1117.1 eV⁴). Because the reference peak of $Ga2p_{3/2}$ in Ga_2O_3 (1117.5– 1117.8⁵) is very close to the one in GaN, the possible presence of the Ga-O bonding as well as the Ga-N bonding cannot be excluded. The N1s peak of all the samples consists of two components (Figure S5d).⁶⁻⁹ The peak of N1s at \sim 398.5 eV is similar to that of NH₃ and primary amines. The presence of the amine peak could be due to the NH₃ molecules adsorbed on the surface during the nitridation.⁸ The other N1s peak appears at the lower binding energy (396.61– 397.00 eV). We assign this peak to nitride (N^{3-}) because the lattice nitrogen peaks of GaN and Zn₃N₂ appear at 397 and 395.7 eV, respectively.^{1,2,4,6-9} The nitride peaks continuously shift to lower binding energy with increasing x values (see Figure S5e). Similar to the case of oxygen, this shift can be also explained by the existence of Zn-N and Ga-N bonds in the lattice and lower electronegativity of Zn than Ga. With increasing Zn content, more electron density moves toward N lowering its binding energy. While XPS analysis of bulk $(Ga_{1-x}Zn_x)(N_{1-x}O_x)$ has been described previously for a narrow range of compositions,^{2,7,10} composition-dependent XPS peak shifting over a broad range of compositions has not been reported before. The XPS data in Figure S5 is consistent with formation of Ga-O and Zn-N bonds in $(Ga_{1,r}Zn_r)(N_{1,r}O_r)$ nanocrystals, in agreement with XRD data in Figure 4.

Figure S6. Band gap determination of $(Ga_{1,x}Zn_x)(N_{1,x}O_x)$ from (a) fitting the below-band gap absorption features for x=0.42 sample as previously described.¹¹ The red line indicates a fit to $\alpha(E) = A \times e^{(E-E_g)/E_u} + B \times E^{-3} + C$, where A, B, and C are constants, E_g is band gap energy, and E_u is Urbach energy. The value of E_g determined by this method is highly dependent on the details of the fit, such as the energy limits. and (b-j) Tauc plots of $(\alpha hv)^2$ against hv. Tauc plot were fit with a straight line (red) below the energy of the absorption feature characteristic of ZnO (3.2 eV). The value of E_g is the x-intercept of the red fit line (k) Band gap energy determined from the direct band gap absorption (Tauc plot), absorption onset, and below-band gap absorption (free carrier + Urbach tail).

Figure S7. Incident photon-to-current efficiency (IPCE) spectra of nanoscale $(Ga_{1-x}Zn_x)(N_{1-x}O_x)$ (*x*=0.40, 0.52, and 0.87) obtained from sulfite oxidation in pH 7 phosphate buffer.

References

1. M. Mapa and C. S. Gopinath, *Chem. Mater.*, 2009, **21**, 351-359.

2. K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y. Inoue, H. Kobayashi and K. Domen, *J. Phys. Chem. B*, 2005, **109**, 20504-20510.

3. G. C. Park, S. M. Hwang, J. H. Choi, Y. H. Kwon, H. K. Cho, S.-W. Kim, J. H. Lim and J. Joo, *Phys. Status Solidi A* 2013, **210**, 1552-1556.

4. N. H. Tran, W. J. Holzschuh, R. N. Lamb, L. J. Lai and Y. W. Yang, *J. Phys. Chem. B*, 2003, **107**, 9256-9260.

5. <u>http://srdata.nist.gov/xps/</u>

6. M. Futsuhara, K. Yoshioka and O. Takai, Thin Solid Films, 1998, 317, 322-325.

7. M. Mapa, K. S. Thushara, B. Saha, P. Chakraborty, C. M. Janet, R. P. Viswanath, C.

Madhavan Nair, K. V. G. K. Murty and C. S. Gopinath, *Chem. Mater.*, 2009, **21**, 2973-2979. 8. X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang and Y. Li, *Nano Lett.*, 2009, **9**, 2331-2336.

9. F. Zong, H. Ma, C. Xue, H. Zhuang, X. Zhang, H. Xiao, J. Ma and F. Ji, *Solid State Commun.*, 2004, **132**, 521-525.

10. J. Wang, B. Huang, Z. Wang, P. Wang, H. Cheng, Z. Zheng, X. Qin, X. Zhang, Y. Dai and M.-H. Whangbo, *J. Mater. Chem.*, 2011, **21**, 4562-4567.

11. A. A. Reinert, C. Payne, L. Wang, J. Ciston, Y. Zhu and P. G. Khalifah, *Inorg. Chem.*, 2013, **52**, 8389-8398.