WSe_2 and $W(Se_xS_{1-x})_2$ nanoflakes grown on carbon nanofibers for electrocatalytic hydrogen evolution reaction

MeiLing Zou, JiaDong Chen, LongFei Xiao, Han Zhu, TingTing Yang, Ming Zhang, MingLiang Du*

Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, 310018, P. R. China

Figure S1. Schematic for the set-up used for the growth of $W(Se_xS_{1-x})_2$ nanoflakes on CFM.

Figure S2. TEM images of WO₃-C-10.

Figure S3. Cross-sectional SEM images of (a and f) WSe₂-C-10, (b and g) WSe₂-C-20, (c and h) WSe₂-C-30, (d and i) and (e and j) W(Se_{0.2}S_{0.8})₂-C-20. The insets in the figure f-j are magnified images of representative triangular nanoflakes.

Table S1. The x value of the W(Se_xS_{1-x})₂-C-y determined by different methods.

	x value calculated from EDS	x value obtained from XPS
W(Se _{0.4} S _{0.6}) ₂ -C-10	0.41	0.38
$W(Se_{0.2}S_{0.8})_2$ -C-20	0.22	0.26

Figure S4. TEM images of (a) WSe₂-C-10, (b) WSe₂-C-20, (c) WSe₂-C-30 to detect the thickness of the WSe₂ nanoflakes.

Figure S5. Element maps of $W(Se_{0.4}S_{0.6})_2$ -C-10 taken from SEM analysis.

Figure S6. EELS spectra of the selected region in figure 2e.

Figure S7. Digital photograph of the catalyst mat.

Figure S8. (a) SEM image of WS₂-C-20 and (b) the polarization curves of WS₂-C-20

and W(Se_{0.2}S_{0.8})₂-C-20

Figure S9. (a) CV plots of the catalytic electrodes at 100 mV s⁻¹ after 400 cycles in 0.5 M H₂SO₄: (I) WSe₂-C-10, (II) Se₂-C-20, (III) WSe₂-C-30, (IV) W(Se_{0.4}S_{0.6})₂-C-10 and (V) W(Se_{0.1}S_{0.9})₂-C-20. CV curves (b) WSe₂-C-10, (c) WSe₂-C-20, (d) WSe₂-C-30, (e) W(Se_{0.4}S_{0.6})₂-C-10 and (f) W(Se_{0.2}S_{0.8})₂-C-20 electrode at various scan rates (0.5-5 mV s⁻¹).

Figure S10. Impedance spectra of the indicated electrodes at $\eta = 150$ mV.

Figure S11. Representative SEM images of (a) WSe_2 -C-20 and (b) $W(Se_{0.4}S_{0.6})_2$ -C-10 after chronoamperometric response test for 12h.

N. 4 1 1			[1 7]	T (1 1		
Material	Morphology	Conductions	$\eta_{10} \left[m v \right]$		Exchange current	rer
		[electrolyte, loading]		$[mV dec^{-1}]$	density [mA cm ⁻²]	
$WS_{2(1-x)}Se_{2x} \\$	monolayer	$0.5M H_2 SO_4$	150	85	N/A	42
		N/A				
$MoS_{1.0}Se_{1.0}$	few layer	$0.5M H_2 SO_4$	200	56±3	0.32	33
		0.18 mg cm^{-2}				
MoSSe	nanoflakes	$0.5M H_2 SO_4$	164±2	48±3	N/A	32
		0.28 mg cm^{-2}				
MoS _{4/3} Se _{2/3}	nanoflakes	$0.5M H_2 SO_4$	172±1	66±1	N/A	32
		0.28 mg cm^{-2}				
MoS _{2/3} Se _{4/3}	nanoflakes	$0.5M H_2 SO_4$	171±2	55±1	N/A	32
		0.28 mg cm^{-2}				
WSe ₂	dendritic	$0.5M H_2 SO_4$	228	80	0.015	28
		2.2 mg cm ⁻²				
W(S _{0.48} Se _{0.52})	₂ nanotube	$1M H_2SO_4$	260	105	0.029	27
		N/A				
WSe ₂	vertical sheets	$0.5 H_2 SO_4$	300	77.4	N/A	26
		N/A				
MoSe ₂	vertical sheets	$0.5 H_2 SO_4$	250	59.8	0.00038	26
		N/A				
WS ₂ e	exfoliated 1T	$0.5 H_2 SO_4$	210	55	0.02	43
		$0.1-0.2 \ \mu g \ cm^{-2}$				
$W(Se_{0.4}S_{0.6})_2$	triangular	0.5 H ₂ SO ₄	174	106	0.229	present
		N/A				work
WSe ₂	triangular	0.5 H ₂ SO ₄	98	158	0.24	present
						work
MoSe ₂ WS ₂ W(Se _{0.4} S _{0.6}) ₂ WSe ₂	vertical sheets exfoliated 1T triangular triangular	0.5 H ₂ SO ₄ N/A 0.5 H ₂ SO ₄ 0.1-0.2 μg cm ⁻² 0.5 H ₂ SO ₄ N/A 0.5 H ₂ SO ₄	250 210 174 98	59.8 55 106 158	0.00038 0.02 0.229 0.24	26 43 present work present work

Table S2. Summary of some state-of-the-art HER electrocatalysts.