Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Electronic Supplementary Information (ESI)

Electropolymerized Polyaniline/Manganese Iron Oxide Hybrids with Enhanced

Color Switching Response and Electrochemical Energy Storage

Yiran Wang,¹ Huige Wei,² Jinmin Wang,^{3,*} Jiurong Liu,^{4,*} Jiang Guo,¹ Xin Zhang,⁵

Brandon L. Weeks,⁵ T. D. Shen,⁶ Suying Wei,² and Zhanhu Guo^{1,*}

¹Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996 USA

²Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, USA

³School of Urban Development and Environmental Engineering, Shanghai Second Polytechnic University, Shanghai 201209, P. R. China

⁴Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China

⁵Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409,

USA

⁶State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Hebei 066004, China

Corresponding Authors:

*E-mail:

wangjinmin@sspu.edu.cn (J. W.); jrliu@sdu.edu.cn (J. L.); zguo10@utk.edu (Z. G.)

Fig. S1 Electropolymerization synthesis of PANI onto (A) bare and (B) $MnFe_2O_4$ coated ITO glasses at a scan rate of 50 mV/s in 0.5 M H₂SO₄ aqueous solution containing 0.1 M aniline.

Fig. S2 CV curves (left) and corresponding scan rate dependent areal capacitance (right) of (a) pristine PANI film and (b) PANI/MnFe₂O₄ nanocomposites film at different scan rates under a potential range from -0.2 to 0.8 V in 1.0 M H_2SO_4 aqueous solution.

Fig. S3 Galvanostatic charge-discharge curves (on the left) and corresponding current density dependent areal capacitance (on the right) of **(a)** pristine PANI film and **(b)** PANI/MnFe₂O₄ nanocomposites film in 1.0 M H_2 SO₄ aqueous solution.

Fig. S4 Cycling stability of (a) pristine PANI and (b) PANI/MnFe₂O₄ nanocomposites electrodes at 0.08 mA/cm² for 800 cycles.

Fig. S5 The Warburg factor σ of (a) pristine PANI and (b) PANI/Mn₂FeO₄ nanocomposites films conducted in 0.5, 1.0 and 2.0 M H₂SO₄ aqueous solution.

Fig. S6 The Warburg factor σ of (a) pristine PANI and (b) PANI/Mn₂FeO₄ nanocomposites films conducted in 2, 22 and 50 °C H₂SO₄ aqueous solution.

The anion diffusion coefficient can be calculated from Equation S(1):

$$D = R^2 T^2 / (2A^2 n^4 F^4 C^2 \sigma^2)$$
 S(1)

where *D* is the diffusion coefficient of the HSO₄⁻ anions, *R* is the gas constant (8.314), *T* is the absolute temperature, A is the surface area of the electrode (4 cm²), n is the number of electrons per molecule during the oxidization (n is 2), F is the Faraday constant (96485 sA/mol), C is the concentration of ions (mol/cm³), σ is the Warburg factor which can be obtained from the slopes in the low frequency region (<1 Hz) of EIS (Figure S5&6).

Fig. S7 The first 6 and 3 CVs of the pristine PANI and PANI/MnFe₂O₄ nanocomposites films at 50 $^{\circ}$ C.