Supporting Information

Three-dimensional interconnected network GeO_x/multi-walled CNTs composite spheres as high-performance anodes for lithium ion batteries

Wei He^a, Huajun Tian^{a*}, Xiaoliang Wang^{a†}, Fengxia Xin^a and Weiqiang Han^{a, b*}

^aNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China

^bSchool of Physical Science and Technology, Shanghai Tech University, Shanghai 200031, P. R.China

†Present address: Seeo Inc., 3906 Trust Way, Hayward, CA 94545

*Corresponding Author:

E-mail address: tianhuajun@nimte.ac.cn; hanweiqiang@nimte.ac.cn

Figure S1. X-ray photoelectron spectroscopy analysis of the $\text{GeO}_x/\text{MWCNTs}$ composite spheres

Figure S2. (a - c) SEM images of the commercial GeO_2 ; (d, e) TEM images of the commercial GeO_2 , and (f) is the selected area electron diffraction (SAED) of the center of the commercial GeO_2 .

Figure S3. Electrochemical performance of the commercial GeO_2 : (a) charge/discharge profiles of the commercial GeO_2 . (d) Cycling performance and Coulombic efficiencies of the commercial GeO_2 at a current density of 50 mA/g for the initial two cycles and at 500 mA/g in the following cycles.

3D GeOx/MWCNTs composite spheres as anode exhibited high rate capability and long-life performances with high areal loading for lithium ion batteries.

