Electronic Supplementary Information (ESI) for

Selective adsorption and irreversible trap of Mercury(II) from aqueous solution by a flower-like titanate nanomaterial

Wen Liu,^{a, b} Xiao Zhao,^b Ting Wang,^a Jie Fu,^{* c} Jinren Ni,^{* a}

^aThe Key Laboratory of Water and Sediment Sciences, Ministry of Education,

Department of Environmental Engineering, Peking University, Beijing 100871, China

^bEnvironmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849, United States

°School of Civil and Environmental Engineering, Georgia Institute of Technology,

Atlanta, GA 30332, USA

*Corresponding author, J. Fu, Tel.: +1 334 524 0068; fax: +1 334 524 0068; E-

mail: jie.fu@ce.gatech.edu

J.R. Ni, Tel: +86-10-6275-1185; Fax: +86-10-6275-6526;

E-mail: nijinren@iee.pku.edu.cn

Contents

Table S1. Kinetic parameters for adsorption of Hg(II) by TNFs.

Table S2. Isotherm parameters for adsorption of Hg(II) by TNFs.

Table S3. Comparison on adsorption capacity of Hg(II) by different adsorbents.

Table S4. HSAB hardness and hydration energy of concerned metal cations.

Table S5. Atomic percent of TNFs before and after adsorption of Hg(II).

Fig. S1 (a) N₂ adsorption-desorption isotherms and (b) pore size distributions of TNFs.Fig. S2 Zeta potential of TNFs as different pH.

Fig. S3 Adsorption isotherm of Hg(II) by P25 at pH 5.

Fig. S4 Species distribution of Hg(II) as a function of pH at 25 °C simulated by Visual MINTEQ 3.0. Total Hg(II) concentration is 50 mg L⁻¹.

Fig. S5 Adsorption capacity of Hg(II) on regenerated TNFs over 3 desorption-regeneration cycles.

	Parameters	Initial Hg(II) concentration	
Kinetic model		(mg L ⁻¹)	(mg L ⁻¹)
		50	100
Pseudo-first-order model	Q _e (mg g⁻¹)	2.70	21.66
	<i>k</i> ₁ (min ⁻¹)	0.0325	0.0061
	R ²	0.5441	0.8887
Pseudo-first-order model	<i>Q_e</i> (mg g ⁻¹)	245.70	411.53
	<i>k</i> ₂ (g mg ⁻¹ min ⁻¹)	0.0230	0.0037
	R ²	1.0000	1.0000

 Table S1. Kinetic parameters for adsorption of Hg(II) by TNFs.

Kinetic model	Parameters	Values
Langmuir model	Q _{max} (mg g ⁻¹)	454.55
	<i>b</i> (L mg ⁻¹)	0.58
	R^2	0.9997
Freundlich model	K_F ((mg g ⁻¹)·(L mg ⁻¹) ^{1/n})	109.01
	n	4.72
	R^2	0.6684

 Table S2. Isotherm parameters for adsorption of Hg(II) by TNFs.

Material	<i>Q_e/Q_{max}</i> (mg g⁻¹)	Conditions	Notes	Reference	
Activated carbon (AC)	55.6	pH 5;	AC made from	1	
		30 °C	sago waste		
Multi-walled carbon	pH 6.7;	Without	0		
nanotubes(MWNTs)	notubes(MWNTs) 87.7 27 °C		additional groups	2	
			2-		
Mesoporous silica	200.6 for SBA-		Mercaptothiazoli		
	15; 140.4 for	рн о;	ne modified	3	
	MCM-41	25 °C	SBA-15 and		
			MCM-41		
			Aspergillus		
Biomass	75.6	рн 8; 30 °C	versicolor	4	
			biomass		
		nЦ 7:	lon-exchange	E	
lon-exchange resin	358.7	μπ <i>τ</i> ,	resin, Duolite™	5	
		20 °C	GT-73		
TNFs	454.6	pH 5;	Sodium	This study	
		25 °C	Trititanate	This study	

 Table S3. Comparison on adsorption capacity of Hg(II) by different adsorbents.

Metal cations	Hardness ⁶	Hydration energy ⁷	
		(kJ mol ⁻¹)	
Na⁺	21.1	405	
K⁺	13.6	321	
Mg ²⁺	32.5	1922	
Ca ²⁺	19.7	1592	
Hg ²⁺	7.7	1853	

Table S4. HSAB hardness and hydration energy of concerned metal cations.

Material	Element (%)			
	Na	0	Ti	Hg
TNFs	11.34	21.44	67.22	0
TNFs-Hg	1.52	26.58	69.06	2.84

 Table S5. Atomic percent of TNFs before and after adsorption of Hg(II).

Fig. S1 (a) N₂ adsorption-desorption isotherms and (b) pore size distributions of TNFs.

Fig. S2 Zeta potential of TNFs as different pH.

Fig. S3 Adsorption isotherm of Hg(II) by P25 at pH 5.

Fig. S4 Species distribution of Hg(II) as a function of pH at 25 °C simulated by Visual MINTEQ 3.0. Total Hg(II) concentration is 50 mg L⁻¹.

Fig. S5 Adsorption capacity of Hg(II) on regenerated TNFs over 3 desorption-regeneration cycles.

References

- K. Kadirvelu, M. Kavipriya, C. Karthika, N. Vennilamani and S. Pattabhi, *Carbon*, 2004, 42, 745-752.
- 2. M. J. Shadbad, A. Mohebbi and A. Soltani, *Korean J. Chem. Eng.*, 2011, 28, 1029-1034.
- D. Perez-Quintanilla, I. del Hierro, M. Fajardo and I. Sierra, *J. Hazard. Mater.*, 2006, 134, 245-256.
- 4. S. K. Das, A. R. Das and A. K. Guha, *Environ. Sci. Technol.*, 2007, 41, 8281-8287.
- 5. S. Chiarle, M. Ratto and M. Rovatti, *Water Res.*, 2000, 34, 2971-2978.
- N. Li, L. Zhang, Y. Chen, M. Fang, J. Zhang and H. Wang, *Adv. Funct. Mater.*, 2012, 22, 835-841.
- 7. B. J, Chichester: Ellis Horwood, 1978.