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1. Membrane photographs
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Fig. S1. The photographs of PEI-PDA/PAN membranes: (a) with different mass ratios
of PEI/DA, (b) with different deposition times.

2. Morphology and chemical properties of membranes with different

deposition times

Fig. S2. FESEM images of membrane surface morphologies: (a) PAN, (b) PEI-
PDA(2 h, 1:1)/PAN, (c) PEI-PDA(4 h, 1:1)/PAN, (d) PEI-PDA(8 h, 1:1)/PAN, (e)
PEI-PDA(16 h, 1:1)/PAN

Fig. S2 shows the surface morphologies of PEI-PDA/PAN membranes with
different deposition times. Due to the increased deposition amount of PEI-PDA
with deposition time, the nanopores on PAN membrane are gradually covered,
and the membrane colour changes from off white to dark brown (Fig. S1b).

Furthermore, protuberances arising from the stacking and assembly of PEI-



PDA oligomers appear on membrane

longer than 4 h.
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Fig. S3. Pore size distributions of (a) PAN membrane, (b) PDA/PAN membrane and
(c) PEI-PDA/PAN membrane.

The pore size distributions of pristine and modified PAN membrane surfaces are

obtained by measuring the nanopores on SEM images, as shown in Fig. S3. The

average size of the nanopores on membrane surface decreases in the order of PAN
membrane, PDA/PAN membrane and PEI-PDA/PAN membrane.
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Fig. S4. Water contact angles and zeta potentials of SA/PEI-PDA(X, 1:1)/PAN

membranes.



3. Interfacial interactions in SA/PAN and SA/PDA(4 h)/PAN

membranes
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Fig. S5. Interfacial interactions in (a) SA/PAN and (b) SA/PDA(4 h)/PAN

membranes.

4. Separation performance of pristine and modified PAN membranes

Table S1 Separation performance of pristine and modified PAN membranes.

Membrane Permeation flux (kg/m? h)  Separation factor
PAN 101 1
PDA(4 h)/PAN 343 1.6
PEI-PDA(4 h, 1:1)/PAN 7.28 5.5

5. Effect of temperature on membrane separation performance
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Fig. S6. The effect of temperature on the separation performance of SA/PEI-PDA(4 h,
1:1)/PAN membrane: (a) permeation flux and separation factor, (b) water/ethanol

permeance, (c) selectivity

The pervaporation experiments of SA/PEI-PDA(4 h, 1:1)/PAN membrane under
temperatures ranging from 313 to 350 K were performed with 90 wt% ethanol
aqueous solution. It is shown in Fig. S6a that both the permeation flux and separation

factor increase with operation temperature. In order to analyse the effects of operation



temperature on water/ethanol permeation process, water/ethanol permeance (driving
force-normalized form of permeation flux, (P/);, GPU) (I GPU=7.501x10'> m3

(STP)/m? s Pa) and selectivity () were calculated as follows and shown in Fig. S6b

and c.
J. J,
(P/);=——= P
Pio = Pu VioXioPio ~ Pu (S-1)
fe (P11,
(P, (S-2)

where, J; is the permeation flux of component i (g/(m? h)), [ is the thickness of
membrane (m), p;y, pi are the partial pressures of component i in the feed side and
permeate side (Pa), p; can be calculated approximately as O for the high vacuum

degree in the permeate side. y;) and x;y are the activity coefficient and mole fraction of
component i in the feed liquid, respectively. p;' is the saturated vapor pressure of

pure component i at operation temperature (Pa). The permeation flux of water and
ethanol should be transformed into the volumes under standard temperature and
pressure (STP): 1 kg of water vapor at STP = 1.245 m3 (STP), 1 kg of ethanol vapor at
STP = 0.487 m3 (STP).!

With the increase of temperature, water permeance continuously increases, while
ethanol permeance exhibits a reverse tendency, thus resulting in the remarkable
enhancement of selectivity. The impacts of temperature on water/ethanol permeation
include three aspects: the loosened membrane structure at higher temperature results
in lower diffusion resistance, favouring the water/ethanol permeation process; the
molecule adsorption on membrane surface is supressed, retarding the water/ethanol
permeation process; the weakened coupling effect between water and ethanol inhibits
the diffusion of ethanol along with water molecules, favouring water permeation and
retarding ethanol permeation. For water permeation in SA/PEI-PDA(4 h, 1:1)/PAN
membrane, the positive impacts on diffusion are dominant, which may be due to the
high water affinity of membrane. By contrast, the negative impacts on adsorption and

diffusion contribute more to ethanol permeation. The continuous enhancement of



water permeance and selectivity indicates that appropriately high operation

temperature is advantageous for preferential permeation of water over ethanol.

6. Long-term separation performance
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Fig. S7. The long-term separation performance of SA/PEI-PDA(4 h, 1:1)/PAN

membrane

7. Comparison of membrane in this study with previous SA-based

membranes in literatures
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Fig. S8. Comparison of membrane in this study with previous SA-based membranes

in literatures
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