Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Na_{2.44}Mn_{1.79}(SO₄)₃: A new member of *alluaudite* family of insertion compounds for sodium ion batteries

Debasmita Dwibedi,[‡] Rafael B. Araujo,^Ø Sudip Chakraborty,^Ø Pradeep P. Shanbogh,⁺ Nalini G. Sundaram,⁺ Rajeev Ahuja,^Ø and Prabeer Barpanda[‡]*

[‡] Faraday Materials Laboratory, Materials Research Centre, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India.

^Ø Condensed Matter Theory Group, Department of Physics and Materials Science, Uppsala University, P.O. Box 530, SE-751 21 Uppsala, Sweden.

⁺ Materials Science Division, Poornaprajna Institute of Scientific Research, Bidalur post, Devanahalli, Bangalore, 562164, India.

List of Contents:

- **Figure S1:** Comparative XRD profiles of Na_{2.44}Mn_{1.79}(SO₄)₃ (NMS) sample stored for different duration. Three selected diffractograms of as-synthesized sample taken after ambient storing for 2 days (black pattern), 3 months (blue pattern) and 1 year (red pattern) are shown. Ambient aging is clearly seen with the appearance of new diffraction peaks. After 1 year, the material degrades to a large extent.
- **Figure S2:** Comparative FTIR profiles of Na_{2.44}Mn_{1.79}(SO₄)₃ (NMS) sample stored for different duration. Three selected spectra are shown for freshly prepared sample stored for 2 days (black pattern), 3 months (blue pattern) and 1 year (red pattern). Sharp change in the relative peak intensity as well as appearance of some new peaks is observed owing to material degradation.

Figure S1:

2