Supporting Information for

Honeycomb in honeycomb carbon bubbles: excellent Li- and Nastorage performances

Gongzheng Yang^{1#}, Huawei Song^{1#}, Hao Cui^{1, 2} and Chengxin Wang^{1, 2*}

¹State key laboratory of optoelectronic materials and technologies, School of Physics Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China

²The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China

[#] These authors contributed equally to this work.

^{*} Correspondence and requests for materials should be addressed to C. X. Wang. Tel & Fax: +86-20-84113901, E-mail: wchengx@mail.sysu.edu.cn

Figure S1. XRD patterns of the HHCBs.

Figure S2. SEM images of the Zn microspheres.

Figure S3. A representative TEM image shows the localized graphitization that probed distributing almost anywhere on the shells of hollow carbon bubbles.

Table S1. BET surface area (S_{BET}), total (V_{total}), micropore (V_{micro}) and mesopore (V_{meso}) pore volumes of the HHCBs.

Sample	S _{BET} ^a	V _{total} ^b	V _{micro} c	V _{meso} ^d	D _{BJH} ^e
	(m²/g)	(cm³/g)	(cm³/g)	(cm³/g)	(nm)
HHCBs	780	1.53	0.32	1.08	8.7

^aS_{BET}: surface area calculated by the BET method.

^bV_{total}: total pore volume of pores.

^cV_{micro}: pore volume of micropores calculated by the HK method.

 ${}^{d}\mathrm{V}_{\text{meso}}$: pore volume of mesopores calculated by the BJH method.

 ${}^{e}D_{BJH}$: mesopore diameter calculated from adsorption branch of nitrogen isotherms using BJH method.

Figure S4. Low-magnification (A) and high resolution (B) TEM images of a broken hollow carbon bubble, in which one can clearly see the gaps, meso-, and micropores.