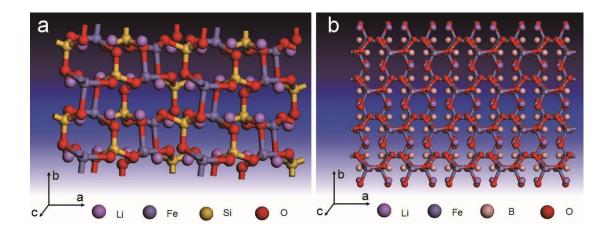
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

### Lithium Storage Properties of In-situ Li<sub>2</sub>FeSiO<sub>4</sub> and LiFeBO<sub>3</sub> Nanocomposites as

### **Advanced Cathode Materials for Lithium Ion Batteries**


Lin Hu, Jinlong Yang, Ibrahim Saana Amiinu, Xiaochun Kang, Wei Zhang and

Shichun Mu\*

State Key Laboratory of Advanced Technology for Materials Synthesis and

Progressing, Wuhan University of Technology, Wuhan, 430070

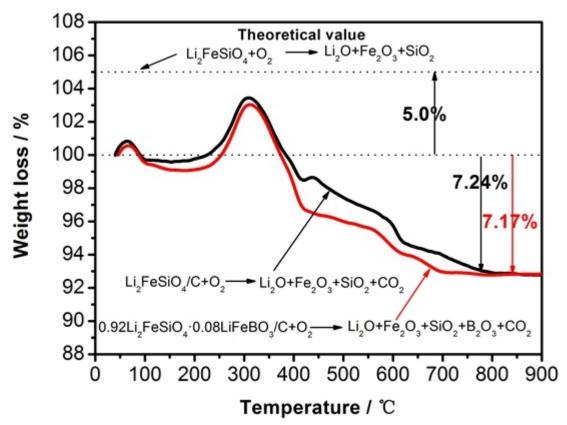
E-mail: msc@whut.edu.cn



**Figure S1.** The crystal structure of  $Li_2FeSiO_4$  (a) and  $LiFeBO_3$  (b) viewed along the c-axis.

#### TG analyses

In the oxygen atmosphere, the reaction of the pure LFS is as following (1): suffering from a weight increase from 100 wt. % to 105 wt. %.


$$Li_2FeSiO_4 + O_2 \rightarrow Li_2O + Fe_2O_3 + SiO_2$$
 (1)

For LFS/C and 0.92LFS·0.08LFB/C composites, the final residues have the analogous composition with the pure LFS sample after 900°C, as following (2):

$$\text{Li}_2\text{FeSiO}_4/\text{C} + \text{O}_2 \longrightarrow \text{Li}_2\text{O} + \text{Fe}_2\text{O}_3 + \text{SiO}_2 + \text{CO}_2\uparrow$$
 (2)

Because of the solid product of LFS/C after reaction with LFS the same, the weight content of the LFS content in the LFS/C is the final percentage weight/105 wt. %, so the carbon content (100 % - (the final percentage weight/105 wt. %)) in the LFS/C and 0.92LFS $\cdot$ 0.08LFB/C composites is 11.66 % and 11.59 %, respectively. In our experiments, TGA was conducted in air (oxygen) over a temperature range of 25–900 oC. In **Figure S2**, the increased weight at ~80 °C in both samples is probably due to slight oxidation of Fe<sup>2+</sup>. The increased weight around 300 °C could be caused by a large number of LFS oxidation which has not been identified, the reaction as following (3):

$$Li_2FeSiO_4/C + O_2 \rightarrow Li_2CO_3 + LiFeSiO_4$$
 (3)



**Figure S2.** Thermogravimetric analysis (TG) curves of (1-x)LFS·xLFB/C composites with x=0 and 0.08.

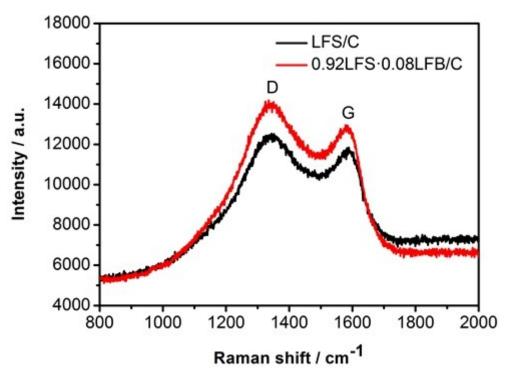



Figure S3. Raman spectra of LFS/C and 0.92LFS 0.08LFB/C.

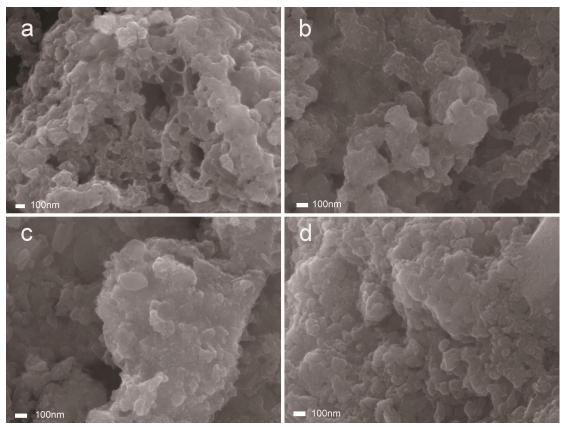



Figure S4. SEM images of  $(1-x)LFS \cdot xLFB/C$  composites with x=0.02 (a), 0.05 (b), 0.12 (c) and 1 (d).

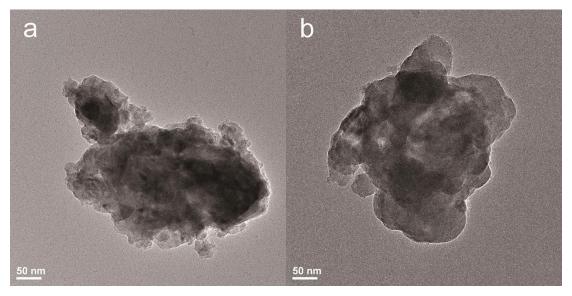
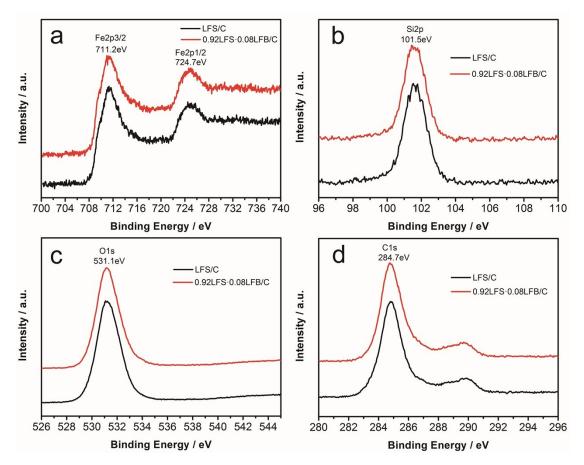




Figure S5. TEM images of the LFS/C (a) and 0.92LFS 0.08LFB/C (b).



**Figure S6.** XPS of -Fe2p (a), -Si2p (b), -O1s (c) and -C1s (d) spectrum of the LFS/C and 0.92LFS · 0.08LFB/C samples.

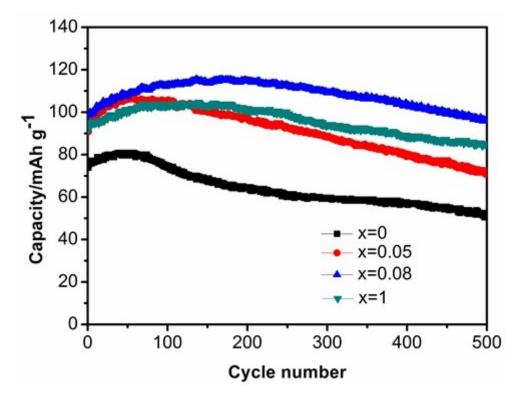



Figure S7. Cycle performance of (1-x)LFS·xLFB/C samples at 10 C.

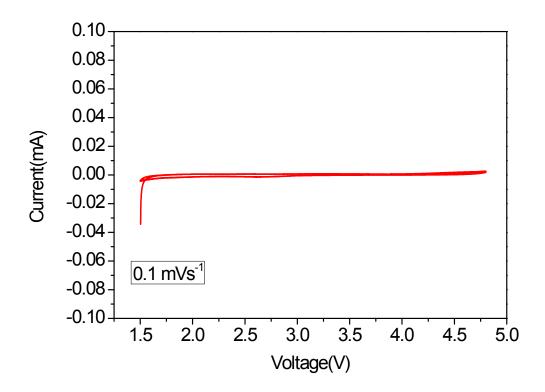



Figure S8 CV curves for the battery without a cathode at a rate of 0.1 mVs<sup>-1</sup>.

**Table S1** Data of the key elements content of the 0.92LFS 0.08LFB/C sample determined by the ICP analyses.

|     | Fe    | Li    | В     |
|-----|-------|-------|-------|
| wt% | 30.89 | 7.586 | 1.124 |
| at% | 0.553 | 1.093 | 0.104 |

## **EIS** analyses

Figure 9a in text displays the Nyquist plots of LFS/C, 0.92LFS  $\cdot$  0.08LFB/C and LFB/C electrodes. The high-frequency intercept on the real axis indicates the ohmic resistance ( $R_{\Omega}$ ) of total resistances including electrolyte, separator and electrical

contacts. The arc in the high-frequency region is related to the migration resistance  $(R_{SEI})$  of lithium ions through the solid electrolyte interface (SEI), while the intermediate-frequency arc is attributed to the charge transfer resistance  $(R_{ct})$  in the cathode-electrolyte interface. Both arcs are associated with the interface between electrolyte and active particles [1].

The constant phase element (CPE) replaces the conventional double-layer and passivation film capacitance [2]. The impedance of CPE is defined as:

$$Z_{\rm CPE} = 1/(Y_0^*(j\omega)^n) \tag{1}$$

where  $\omega$  is the angular frequency, *j* is imaginary unit, and *Y*<sub>0</sub> and *n* are constants. A CPE represents a resistor when *n* = 0, a Warburg resistance when *n* = 0.5, and a capacitor when *n* = 1.

The diffusion coefficient of lithium ions  $(D_{Li})$  can be obtained according to the following equations [1, 3]:

$$D_{\rm Li} = R^2 T^2 / 2A^2 n^4 F^4 C_{\rm Li}^2 \delta^2$$
 (2)

where R is the gas constant, T is the absolute temperature, A is the surface area of the cathode, n is the number of electrons per molecule during oxidation, F is the Faraday constant,  $C_{Li}$  is the concentration of lithium ion, and  $\delta$  is the Warburg coefficient which is related to Z' according to equation 3 [1, 3]:

$$Z' = (R_{\Omega} + R_{ct}) + \delta \omega^{-1/2}$$
(3)

where  $\omega$  is the angular frequency in the low frequency region, both  $R_{\Omega}$  and  $R_{ct}$  are kinetics parameters independent of frequency,  $\delta$  is the slope for the plot of Z' versus the reciprocal square root of the lower angular frequencies ( $\omega^{-1/2}$ ). The Warburg

coefficient ( $\delta$ ) is obtained by linear fitting of Z' versus  $\omega^{-1/2}$  as shown in **Figure 9b** in text.

**Table S2** The EIS parameters and diffusion coefficient of lithium ion for the LFS/C,0.92LFS·0.08LFB/C and LFB/C samples tested at 45°C.

|                                      |                  | LFS/C                    | 0.92LFS · 0.08LFB/C      | LFB/C                    |
|--------------------------------------|------------------|--------------------------|--------------------------|--------------------------|
| Resistance<br>(Ω)                    | $R_{\Omega}$     | 4.7                      | 17.6                     | 5.1                      |
|                                      | R <sub>SEI</sub> | 118.5                    | 125.5                    | 88.0                     |
|                                      | R <sub>ct</sub>  | 329.4                    | 235.6                    | 122.4                    |
| $CPE_1$ (S s <sup>n</sup> )          |                  | 3.01 × 10 <sup>-5</sup>  | 1.95 × 10 <sup>-5</sup>  | 6.47 × 10 <sup>-5</sup>  |
| n <sub>1</sub>                       |                  | 0.69                     | 0.70                     | 0.69                     |
| CPE <sub>1</sub> (S s <sup>n</sup> ) |                  | 2.51 × 10 <sup>-4</sup>  | 1.32 × 10 <sup>-4</sup>  | 8.94 × 10 <sup>-5</sup>  |
| n <sub>2</sub>                       |                  | 0.73                     | 0.59                     | 0.92                     |
| $Z_{w}$ (S s <sup>0.5</sup> )        |                  | 7.42 × 10 <sup>-3</sup>  | 7.74 × 10 <sup>-3</sup>  | 1.15 × 10 <sup>-2</sup>  |
| D (cm <sup>2</sup> s <sup>-1</sup> ) |                  | 2.36 × 10 <sup>-14</sup> | 3.88 × 10 <sup>-14</sup> | 1.14 × 10 <sup>-13</sup> |

# References

[1] R. Fu, Y. Li, H. Yang, Y. Zhang and X. Cheng, *Journal of The Electrochemical Society*, 2013, **160**, A3048-A3053.

[2] M. Ciureanu and R. Roberge, *The Journal of Physical Chemistry B*, 2001, 105, 3531-3539.

[3] J. Yang, X. Kang, L. Hu, X. Gong and S. Mu, Journal of Materials Chemistry A,

2014, 2, 6870-6878.