Electronic Supplementary Information

Nickel-Rich Layered LiNi_{1-x} M_x O₂ (M = Mn, Fe, and Co) Electrocatalysts with High Oxygen Evolution Reaction Activity

Veronica Augustyn, Soosairaj Therese, Travis C. Turner, and Arumugam Manthiram

Materials Science and Engineering Program & Texas Materials Institute The University of Texas at Austin Austin, TX 78712, USA

Table S1. BET surface areas of selected $\text{LiNi}_{1-x}M_x\text{O}_2$ (M = Mn, Fe, and Co) compounds investigated for the OER

Composition	BET Surface Area (m ² g ⁻¹)
LiNiO ₂ , 850°C	1.2
LiNi _{0.9} Co _{0.1} O ₂ , 850°C	1.3
LiNi _{0.9} Mn _{0.1} O ₂ , 850°C	1.2
LNFO, 750°C	3.2

Figure S1. 7-point BET data for $LiNiO_2$, $LiNi_{0.9}Co_{0.1}O_2$, $LiNi_{0.9}Mn_{0.1}O_2$, and LNFO used to calculate the surface areas shown in Table S1.

<u>Composition</u>	$\mathbf{Q}_{\mathbf{anodic}}$ (C g ⁻¹)	$\mathbf{Q}_{\text{cathodic}}$ (C g ⁻¹)
LNO	2.7	5.0
$Ni(OH)_2$	146.6	169.9
LNFO	1.2	3.9
$Ni_{0.9}Fe_{0.1}(OH)_x$	38.7	40.4
LNMO	10.7	21.6
$Ni_{0.7}Mn_{0.3}(OH)_x$	17.5	17.7
LNMFO	1.4	3.8
$Ni_{0.7}Mn_{0.2}Fe_{0.1}(OH)_x$	12.3	18.5
LNCO	5.2	6.8
$Ni_{0.7}Co_{0.3}(OH)_x$	37.3	38.1
LNCFO	18.2	29.0
LNCFO- δ	32.0	43.8
$Ni_{0.7}Co_{0.3}Fe_{0.1}(OH)_{x}$	26.9	33.2

Table S2. Capacity (Q) of pre-OER redox peaks calculated from third cycle CVs at 10 mV s⁻¹ for LiNi_{1-x} M_x O₂ and Ni_{1-x} M_x (OH)_x

Figure S2. SEM images of the $\text{LiNi}_{1-x}M_x\text{O}_2$ samples, synthesized at 850 °C in air, investigated for the OER: (a) LiNiO_2 , (b) $\text{LiNi}_{0.95}\text{Mn}_{0.05}\text{O}_2$, (c) $\text{LiNi}_{0.9}\text{Mn}_{0.1}\text{O}_2$, (d) $\text{LiNi}_{0.85}\text{Mn}_{0.15}\text{O}_2$, and (e) $\text{LiNi}_{0.9}\text{Co}_{0.1}\text{O}_2$. Scale bar = 5 µm.

Figure S3. XRD patterns of $\text{LiNi}_{1-x}M_x\text{O}_2$ synthesized at 850°C in air. The samples all crystallize in the O3 layered structure; the reference pattern is shown at the bottom (PDF# 00-056-1441, $\text{LiNi}_{0.85}\text{Co}_{0.15}\text{O}_2$). * denotes Li_2CO_3 impurity present due to the high-temperature synthesis in air.

Figure S4. SEM images of the LiNi_{1-x} M_x O₂ samples, synthesized at 750°C in O₂, investigated for the OER: (a) LNO, (b) LNFO, (c) LNMO, (d) LNMFO, (e) LNCO, (f) LNCFO- δ . Scale bar = 5 µm.

Figure S5. As Ni content and Li content increase during high-temperature synthesis, Ni-rich $LiMO_2$ tend to form Li_2CO_3 impurity even in an oxygen-rich atmosphere. To explore the effect of the small amount of Li_2CO_3 impurity present in the samples on OER activity, 5 mg of Li_2CO_3 was added to the standard ink preparation of NiO (25 mg active material, 5 mg acetylene black, 154 µL of Nafion/0.1 M NaOH solution, 4.5 mL water, and 0.5 mL isopropanol). There was no observed effect of Li_2CO_3 on the pre-OER redox peaks or the OER onset potential. We hypothesize that the efficient rotation of the RDE (1600 rpm) quickly diffuses away the carbonate impurity into the electrolyte (~ 150 mL of 0.1 M KOH).

Figure S6. XRD pattern of LiFeO₂ (ICP composition: $Li_{1.01}Fe_{0.99}O_2$) synthesized by a solidstate reaction between Fe₂O₃ and Li_2CO_3 at 750 °C in air. The major reflections correlate with the disordered cubic structure of α -LiFeO₂ (PDF# #00-017-0938).

Figure S7. First cycle CVs in 0.5 M Li₂SO₄ at 10 mV s⁻¹ for LNCFO and LNCFO- δ . The capacity associated with the anodic peak current corresponds to the irreversible extraction of Li⁺ from Li*M*O₂. More Li⁺ is extracted from LNCFO- δ (which also contained more Li⁺ in the assynthesized state) and this compound had higher OER activity.

Figure S8. Comparison of the pre-OER redox peaks in (a) LNO and LNFO (synthesized at 750 °C in flowing O₂) and (b) Ni(OH)₂ and Ni_{0.9}Fe_{0.1}(OH)_x synthesized at room temperature and used as precursors for the solid-state synthesis.

Figure S9. Comparison of the pre-OER redox peaks in (a) LNCO, LNCFO, and LNCFO- δ (synthesized at 750 °C in flowing O₂) and (b) Ni_{0.7}Co_{0.3}(OH)_x and Ni_{0.7}Co_{0.2}Fe_{0.1}(OH)_x synthesized at room temperature and used as precursors for the solid-state synthesis.

Figure S10. Comparison of the pre-OER redox peaks in (a) LNMO and LNMFO (synthesized at 750 °C in flowing O₂) and (b) $Ni_{0.7}Mn_{0.3}(OH)_x$ and $Ni_{0.7}Mn_{0.2}Fe_{0.1}(OH)_x$ synthesized at room temperature and used as precursors for the solid-state synthesis.

Figure S11. XPS of the C 1s spectrum of LNFO. The tallest peak, corresponding to adsorbed adventitious hydrocarbons (284.9 eV), was used for calibration of the spectrum.