Supporting Information

Synthesis of tri-level hierarchical SAPO-34 zeolite with intracrystalline micro-meso-macroporosity showing superior MTO performance

Qiming Sun,^{a‡} Wang Ning,^{a‡} Guanqi Guo,^a Xiaoxin Chen,^a and Jihong Yu*^a

^a State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China

Figure S1 The TG curves of conventional microporous SAPO-34 (S_M) and hierarchically porous SAPO-34 (S_{H1} , S_{H2} , S_{H3} , and S_{H4}) catalysts.

Figure S2 Selectivity of ethylene versus time-on-stream over conventional microporous SAPO-34 (S_M) and hierarchically porous SAPO-34 (S_{H1} , S_{H2} , S_{H3} , and S_{H4}) catalysts in MTO reaction. Experimental conditions: WHSV = 4 h⁻¹, T = 723 K, catalyst weight = 300 mg.

Figure S3 Selectivity of propylene versus time-on-stream over conventional microporous SAPO-34 (S_M) and hierarchically porous SAPO-34 (S_{H1} , S_{H2} , S_{H3} , and S_{H4}) catalysts in MTO reaction. Experimental conditions: WHSV = 4 h⁻¹, T = 723 K, catalyst weight = 300 mg.

Figure S4 Products distribution of conventional microporous SAPO-34 catalyst (S_M) in MTO reaction. Experimental conditions: WHSV = 4 h⁻¹, T = 723 K, catalyst weight = 300 mg.

Figure S5 Products distribution of hierarchically porous SAPO-34 catalyst (S_{H1}) in MTO reaction. Experimental conditions: WHSV = 4 h⁻¹, T = 723 K, catalyst weight = 300 mg.

Figure S6 Products distribution of hierarchically porous SAPO-34 catalyst (S_{H2}) in MTO reaction. Experimental conditions: WHSV = 4 h⁻¹, T = 723 K, catalyst weight = 300 mg.

Figure S7 Products distribution of hierarchically porous SAPO-34 catalyst (S_{H3}) in MTO reaction. Experimental conditions: WHSV = 4 h⁻¹, T = 723 K, catalyst weight = 300 mg.

Figure S8 Products distribution of hierarchically porous SAPO-34 catalyst (S_{H4}) in MTO reaction. Experimental conditions: WHSV = 4 h⁻¹, T = 723 K, catalyst weight = 300 mg.

Figure S9 Hydrogen transfer index (HTI, C_3H_8/C_3H_6) values of methanol conversion over conventional microporous SAPO-34 (S_M) and hierarchically porous SAPO-34 (S_{H1}, S_{H2}, S_{H3}, and S_{H4}) catalysts. Experimental conditions: WHSV = 4 h⁻¹, T = 723 K, catalyst weight = 300 mg.

Samples	TOS (min)	Selectivity (%)							
		CH_4	C_2H_4	C_2H_6	C_3H_6	$\mathrm{C_{3}H_{8}}$	C_4	C_5^+	$C_2^{=}+C_3^{=}$
S _M	6	1.4	33.9	0.5	41.2	4.2	15.1	3.7	75.1
	66*	1.6	41.0	0.7	38.8	2.8	11.4	3.7	79.8
S _{H1}	6	1.2	36.5	0.5	39.4	3.5	14.4	4.5	75.6
	186*	2.8	47.8	0.6	35.1	1.4	8.9	4.8	82.9
S _{H2}	6	1.3	36.0	0.5	39.6	3.5	14.6	5.1	75.6
	306*	2.7	49.3	0.5	34.2	0.9	8.9	3.5	83.5
S _{H3}	6	1.0	33.1	0.5	41.1	3.8	16.0	4.5	74.2
	386*	2.7	51.1	0.5	33.1	0.9	8.4	3.3	84.2
S_{H4}	6	1.5	39.4	0.5	38.5	2.4	13.6	4.1	77.9
	226*	2.3	48.2	0.5	34.9	1.1	9.3	3.7	83.1

Reaction conditions: WHSV = 4 h^{-1} , T =723K, catalyst weight = 300 mg.

* Lifetime: the reaction duration with > 99.9% methanol conversion.

Table S2 The variations of coke formation in methanol conversion over conventional microporous SAPO-34 (S_M) and hierarchically porous SAPO-34 (S_{H1} , S_{H2} , S_{H3} , and S_{H4}) catalysts.

Catalysts	S_{M}	\mathbf{S}_{H1}	\mathbf{S}_{H2}	$S_{\rm H3}$	\mathbf{S}_{H4}
Coke (%, g/gcat)	16.95	22.39	23.06	23.07	21.18
TOS (min)	126	246	366	486	286
R _{coke} (mg/min) (1)	0.403	0.273	0.189	0.142	0.222
$P_{coke}(g/gMeOH)(2)$	0.020	0.014	0.009	0.007	0.011

(1) $R_{coke}(mg/min) = coke amount (mg) / reaction time (min);$

(2) $P_{coke}(g/gMeOH) = coke amount (g) / methanol feedstock (g).$