3D Si/C Particulate Nanocomposites Internally-Wired with Graphene Networks for High Energy and Stable Batteries

Jaegyeong Kim^a, Changil Oh^a, Changju Chae^{a,b}, Dae-Hoon Yeom^a, Jaeho Choi^a, Nahyeon Kim^a, Eun-Suok Oh^c, Jung Kyoo Lee^{a*}

^aDepartment of Chemical Engineering, Dong-A University, Busan 604-714, Republic of Korea ^bDivision of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon 305-600, Republic of Korea ^cSchool of Chemical Engineering & Bioengineering, University of Ulsan, Ulsan 680-749, Republic of Korea

Supporting Information

Figure S1. SEM images of (a, b) Si/C-IWGN-1, (c, d) Si/C-IWGN-2, and TEM images of (e) SiNPs,(f) Si/C-1 and (g, h) Si/C-IWGN-1.

Figure S2. SEM images of (a, b) Si/C-1, (c, d) Si/C-2 and (e, f) Si/C-3.

Figure S3. TEM images of (a, b) Si/C-2 and (c, d) Si/C-3.

Figure S4. TGA profiles of reference Si/C samples, Si/C-IWGN-1, Si/C-IWGN-4 and Si/C-IWGN-5 run in air flow.

Figure S5. XRD patterns of (a) Si/C-1 and Si/C-IWGN-1 \sim 3 and (b) Si/C-2 and Si/C-IWGN-4 \sim 6 series samples.

Figure S6. (a) FTIR and (b) Raman spectra of GO, Si/C-IWGN-2(gel), thermally reduced rGO and Si/C-IWGN samples.

Figure S7. X-ray photoelectron spectra of SiNPs, Si/C-IWGN-3, Si/C-IWGN-4 and Si/C-IWGN-5.

Electrodes	Sheet resistance ^a (m Ω per square)	Coating thickness ^b (µm)	Resistivity ^c (Ω·cm)	Conductivity ^d (S·cm ⁻¹)
Si/C-1	1.97	40.3	7.9′10 ⁻⁶	1.3′10 ⁵
Si/C-IWGN-1	2.28	39.3	9.0´10 ⁻⁶	1.1′10 ⁵
Si/C-IWGN-2	38.15	36.2	1.4′10-4	7.1'10 ³
Si/C-IWGN-3	56.52	36.0	2.0′10-4	5.0'10 ³

 Table S1. Electrode sheet resistance and conductivity

Notes; *a*Sheet resistances are average values on $10\sim12$ different measurements, *b*coating thicknesses are average values on 6 different measurements, *c*Resistivity = (sheet resistance) '(coating thickness) and *d*Conductivity = (Resistivity)⁻¹.

Figure S8. Sheet resistivity and conductivity measured on electrodes of Si/C-1 and Si/C-IWGN-1~3 series samples.

Figure S9. SEM images of (a, b) Si/C-1 and (c, d) Si/C-IWGN-2 before (left column) and after cycling for 50 cycles at $0.5A \text{ g}^{-1}$.

Figure S10. SEM images of electrode cross-sections of graphite for its pristine and after the first lithiation and delithiation.

Samples	Si/C-IWGN-3	Si/C-IWGN-6	Si-Gr	Graphite
mg_ _{A.M.} /cm ^{2a}	1.51	1.63	1.91	3.43
mg_total/cm ^{2b}	1.89	2.04	2.39	4.29
coating thickness (µm)°	31.0	37.2	22.1	26.3
coating density (g_ _{total} /cm ³) ^b	0.61	0.55	1.09	1.63
specific capacity-1 (mAh/g_ _{A.M.}) ^a	994	1557	899	370
specific capacity-2 (mAh/g_total)	795	1246	719	296
volumetric capacity ^d (mAh/cm ³ total) ^b	484	682	777	483

 Table S2. Coating densities and volumetric capacities electrodes

Notes; ^avalues based on the mass of active material (A.M.) only, ^bvalues based on the total mass inclusive of active material, binder and conductive additive coated on electrode, ^cmeasured by SEM of electrode cross-section, and ^dvolumetric capacity (mAh/cm^3_{total}) = specific capacity-2 (mAh/g_{total}) × coating density (g_{total}/cm^3).

Figure S11. Voltage profiles of graphite for the initial two cycles at the current of 100 mA g^{-1} between 0.005 – 2.0 V.