Supporting Information

Investigation of Ultra-Thin Titania Films as Hole-Blocking Contacts for Organic Photovoltaics

Hyungchul Kim, Kai-Lin Ou, Xin Wu, Paul F. Ndione, Joseph Berry, Yannick Lambert, Thierry Mélin, Neal R. Armstrong, and Samuel Graham Jr.*

Film growth rate

The ALD TiO_x film thickness on a silicon substrate was measured using various-angle spectroscopic ellipsometry (M-2000, J. A. Woollam Co., Inc.). The thickness of the ALD layers versus the number of deposition cycles is plotted in Fig. S1. The ellipsometry spectra were fitted with the Cauchy dispersion model.¹ The measured TiO_x thickness increases linearly with deposition cycles as expected, and the growth rate was observed to be 0.51 Å cycle⁻¹, which is very similar to other ALD studies. ², ³ The growth rate data suggest that the films were deposited by well understood ALD processes, without excessive condensation or desorption of precursors on substrates. ^{4, 5}

Fig. S1 TiO_x film thickness depending on the number of ALD cycles.

Chemical composition

The chemical composition of ALD TiO_x film was analyzed using XPS (Thermo K-alpha, Thermo Scientific) and angle-resolved XPS (Kratos Axis Ultra). Al-K α X-ray source (1486.6 eV) was used as an excitation source. Fig. S2 shows high resolution XPS spectra of (a) Ti 2p level and (b) O 1s level for the TiO_x film at a normal collection angle. The Ti 2p and O 1s spectra were fitted using 2 Gaussian-Lorentzian peaks. The shape and peak positions of the Ti $2p_{3/2,1/2}$ peaks was consistent with the formation of TiO₂ with no observable lower oxidation state mid-gap defects.⁶ In the O 1s spectra, however, a distinguishable hydroxide, OH⁻, peak was found at 532.4 eV, consistent with the presence of a small titanium hydroxide component incorporated into the otherwise stoichiometric TiO_x layer. For the details of thin TiO_x layers, Fig. S3 shows O 1s XPS spectra with various thick TiO_x layers on ITO at two collection angle, (a) 0° and (b) 60°.

Fig. S2 XPS spectrum of 3 nm TiO_x layer on a silicon wafer. Lorentz-Gaussian fitting line (solid line) and Shirley background (dashed line) are also plotted. (a) Ti 2p spectra, and (b) O 1s spectra.

Fig. S3 Angle-resolved XPS of TiO_x on ITO/glass substrates at a collection angle of (a) 0° and (b) 60° .

OPV characterization – Ideality factor

The local ideality factor is a measure of the slope of the J–V characteristics on a semi-logarithmic plot (Fig. 10 (a)). The ideality factor of the device is determined from the plateau in the Ideality factor – Voltage characteristics.⁷ The increase of ideality factor in the low voltage region is an indication of small shunt resistance. Devices with 3 nm TiO_x films provide the lowest reverse saturation current, the best ideality factor and the largest shunt resistance.

Fig. S4 Ideality factor – Voltage characteristics calculated for the photovoltaic devices with ALD TiO_x films of different thicknesses.

References

1. M. Born and E. Wolf, *Principles of optics: electromagnetic theory of propagation, interference and diffraction of light*, Cambridge university press, NY, USA, 1999.

 S. E. Potts, W. Keuning, E. Langereis, G. Dingemans, M. C. M. van de Sanden and W. M. M. Kessels, *J. Electrochem. Soc.*, 2010, **157**, P66-P66.

3. Q. Xie, J. Musschoot, D. Deduytsche, R. L. Van Meirhaeghe, C. Detavernier, S. Van den Berghe, Y.-L. Jiang, G.-P. Ru, B.-Z. Li and X.-P. Qu, *J. Electrochem. Soc.*, 2008, **155**, H688-H688.

4. S. M. George, *Chem. Rev.*, 2010, **110**, 111-131.

5. M. Leskelä and M. Ritala, *Thin Solid Films*, 2002, **409**, 138-146.

6. J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, *Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data*, Physical Electronics, MN, USA, 1995.

7. G.-J. A. H. Wetzelaer, M. Scheepers, A. M. Sempere, C. Momblona, J. Ávila and H. J. Bolink, *Adv. Mater. (Weinheim, Ger.)*, 2015, **27**, 1837-1841.