Crystalline Cu-Sn-S Framework for High Lithium Storage

Lina Nie,[†]*‡*[†]Yu Zhang, [⊥]*‡*[†]Kaiqi Ye,[#] Jianyu Han,[‡] Yue Wang ,[#] Rakesh Ganguly,[§] Yongxin Li,[§] Rong Xu*[‡], Qingyu Yan*[‡], Qichun Zhang*[‡]§

	CTS
Chemical formula	$C_2N_2H_{16}OCu_8Sn_3S_{12}$
Formula mass	1349.278
Crystal system	Cubic
Space group	<i>F</i> -43 <i>c</i>
a (Å)	18.040(2)
<i>b</i> (Å)	18.040(2)
<i>c</i> (Å)	18.040(2)
a (deg)	90.00
β (deg)	90.00
γ (deg)	90.00
$V(Å^3)$	5871.0(12)
Z	4
D_{cal} (g/cm ³)	3.116
Theta (deg)	3.19-27.00
GOF on F^2	1.118
$R_1, wR_2[I > 2\sigma(I)]$	0.0374, 0.1058
R_1, wR_2 (all data)	0.0525, 0.1157
${}^{a}R_{1} = \sum \left\ \mathbf{F}_{o} \right\ - \left \mathbf{F}_{c} \right\ / \sum \left \mathbf{F}_{o} \right \cdot {}^{b}wR_{2} =$	$\left[\sum w \left(F_{o}^{2}-F_{c}^{2}\right)^{2}/\sum w \left(F_{o}^{2}\right)^{2}\right]^{1/2}.$

Supporting Information

Table S1. Crystallographic data and structure refinement for CTS

Electrode description	Cycling stability	Cycling stability	Ref.
SnS ₂ nanoparticles	293 mAh g ⁻¹ after 50 cycles at 50 mA g ⁻¹ (a capacity fade of 4.7 mAh g ⁻¹ per cycle)	55.6% of an initial capacity of 527 mAh g ⁻¹	1
SnS ₂ powder	400 mAh g ⁻¹ after 25 cycles at 50 mA g ⁻¹	66.6% of an initial capacity of 600 mAh g ⁻¹	2
SnO ₂ nanowires	300 mAh g ⁻¹ up to the 50th cycle	60% of the fifth-cycle capacity	3
SnO ₂ hollow structures	About 500 mAh g ⁻¹ at 100 mA g ⁻¹ after 40 cycles	43.8 % of an initial capacity of 1140 mAh g ⁻¹	4
2D-SnS ₂ nanoplates	583 mAhg 100mA g ⁻¹ after 30 cycles	85% of the 2rd-cycle capacity	5
SnS ₂ nanotablets	168 mAh g ⁻¹ at 0.5 C after 200 cycles	60% of the initial capacity of 1250 mAh g ⁻¹	6

Table S2. A survey of electrochemical properties of Tin-based materials for LIBs

Figure S1. The energy dispersive X-ray (EDX) spectroscopy of CTS.

Figure S2. FTIR spectrum for CTS with the assignment of main absorption peaks.

Figure S3. TGA curve for CTS.

References

- H. S. Kim, Y. H. Chung, S. H. Kang and Y. E. Sung, *Electrochim. Acta*, 2009, 54, 3606-3610.
- 2. T. Momma, N. Shiraishi, A. Yoshizawa, T. Osaka, A. Gedanken, J. J. Zhu and L. Sominski, *J. Power Sources*, 2001, **97-8**, 198-200.
- 3. M. S. Park, G. X. Wang, Y. M. Kang, D. Wexler, S. X. Dou and H. K. Liu, *Angew. Chem.*, 2007, **46**, 750-753.
- 4. J. S. Chen, L. A. Archer and X. W. Lou, J. Mater. Chem., 2011, 21, 9912-9924.
- 5. J. W. Seo, J. T. Jang, S. W. Park, C. J. Kim, B. W. Park and J. W. Cheon, *Adv. Mater.*, 2008, **20**, 4269-4273.
- 6. Z. F. Jiang, C. Wang, G. H. Du, Y. J. Zhong and J. Z. Jiang, *J. Mater. Chem.*, 2012, **22**, 9494-9496.