Supporting Information

Enhanced capacitance of nitrogen-doped hierarchical porous carbide-derived carbon in matched ionic liquids

J.-K. Ewert,^a D. Weingarth,^b C. Denner,^a M. Friedrich,^a M. Zeiger,^c A. Schreiber,^b N. Jäckel,^c V. Presser,^{c*} and R. Kempe^{a*}

- a) Inorganic Chemistry II, Universität Bayreuth, Universitätsstraße 30, NW I, 95440 Bayreuth, Germany
- b) INM Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- c) Department of Materials Science and Engineering, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany

* Corresponding authors. E-mail: kempe@uni-bayreuth.de (Rhett Kempe) and volker.presser@leibniz-inm.de (Volker Presser)

Figure S1. (A) Scanning electron micrograph of the polystyrene PS50. (B) Photon correlation spectrum of PS50 shows a narrow particle size distribution in the range of 19.7 nm and 31.3 nm with a peak at 24.8 nm. (C) Thermogravimetric analysis of PS50 shows a mayor mass loss between 400 and 470 °C (using a heating rate of 0.5 °C/min, nitrogen atmosphere).

Figure S2. (A) SEM image and (B) TEM image of $PS_{50}SiCN_{900}$ verify the pore structure. (C) Pore size distribution of $PS_{50}SiCN_{900}$, measured by nitrogen gas sorption at -196 °C, shows presence of mesopores and a BET surface area of 130 m²/g. (D) FT-IR measurement of $PS_{50}SiCN_{900}$ exhibits the characteristic broad SiCN peak between 1250 cm⁻¹ and 750 cm⁻¹. (E) TGA measurements of the $PS_{50}SiCN_{900}$ green body and the $PS_{50}SiCN_{900}$ material.

Figure S3. (A) SEM image and (B) TEM image of PS₅₀SiCN₉₀₀Cl₂-800°C. (C) SEM image and (D) TEM image of PS₅₀SiCN₉₀₀Cl₂-1000°C. Both materials show the honeycombed pore structure of the ceramic template.

Figure S4. Comparison of the specific capacitance determined by GCPL for (A) PS₅₀SiCN₉₀₀Cl₂-800°C and (B) PS₅₀SiCN₉₀₀Cl₂-1000. (C) In situ resistivity measurement of YP 80F with EMIM-BF₄ as electrolyte. (D) Cyclic voltammograms of SiC-CDC 800 and PS₅₀SiCN₉₀₀Cl₂-800°C in EMIM-BF₄ as electrolyte, scan rate: 10 mV/s. (E) Calculated pore size distribution of SiC-CDC 800°C and PS₅₀SiCN₉₀₀Cl₂-800°C.

Figure S5. Cycling stability of PS₅₀SiCN₉₀₀Cl₂-800°C and PS₅₀SiCN₉₀₀Cl₂-1000°C in EMIM-BF₄ as electrolyte at 1 A/g.