Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

## **Supporting Information**

## Photocatalytic reduction of CO<sub>2</sub> with water promoted by Ag clusters in Ag/Ga<sub>2</sub>O<sub>3</sub> photocatalyst

Muneaki Yamamoto,\*\* Tomoko Yoshida,\*\* Naoto Yamamoto,\* Toyokazu Nomoto,\* Yuta Yamamoto,\* Shinya Yagi\* and Hisao Yoshida\*.

<sup>a</sup>Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan

<sup>b</sup>Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka 558-8585, Japan

<sup>c</sup>EcoTopia Science Institute, Nagoya University, Nagoya 464-8603, Japan

<sup>d</sup>Aichi Synchrotron Radiation Center, Seto 489-0965, Japan

<sup>e</sup>Graduate school of human and environmental studies, Kyoto University, Kyoto 606-8501, Japan

<sup>f</sup>Element Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan

\*E-mail: yamamoto.muneaki@f.mbox.nagoya-u.ac.jp, tyoshida@ocarina.osaka-cu.ac.jp

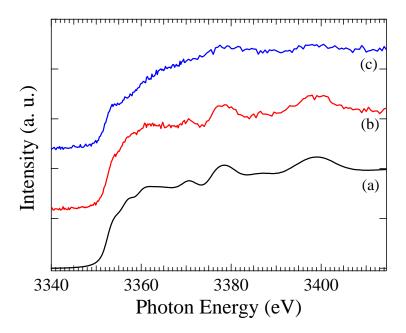



Figure S1. Ag  $L_3$ -edge XANES spectra of an Ag foil (a) and those of 1.0 wt% Ag/Ga<sub>2</sub>O<sub>3</sub>(PD) sample as-prepared (b) and after heating at 673 K for 2 h in air (c).

The 1.0 wt% Ag loaded Ga<sub>2</sub>O<sub>3</sub> (Ag/Ga<sub>2</sub>O<sub>3</sub>(PD)) samples were prepared by photodeposition method. A part of the samples was heated at 673 K for 2 h in air. XANES measurements of the samples were carried out in the same way to Figure 4. As shown in Figure S1, the XANES spectrum of the 1.0 wt% Ag/Ga<sub>2</sub>O<sub>3</sub>(PD) sample as-prepared (b) has the feature characteristic of Ag metal (a). On the other hand, XANES spectrum of the 1.0 wt% Ag/Ga<sub>2</sub>O<sub>3</sub>(PD) sample heated at 673 K for 2 h in air (c) has the broadening feature similar to that of the 0.1 wt% Ag/Ga<sub>2</sub>O<sub>3</sub> sample discussed in the main text. In our separate TEM measurements, we confirmed that the Ag particle size in the 1.0 wt% Ag/Ga<sub>2</sub>O<sub>3</sub>(PD) sample became much smaller as 1-2 nm by the heating and the Ag clusters were highly dispersed on the Ga<sub>2</sub>O<sub>3</sub> surface (Figure S2). Therefore, we concluded that the broadening feature of XANES should originate from the decreased Ag particle size and/or the enhanced interaction between the Ag clusters and the Ga<sub>2</sub>O<sub>3</sub> surface.

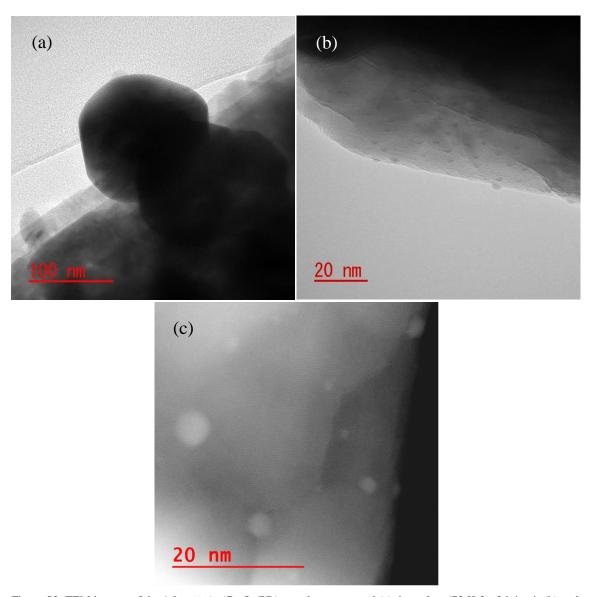



Figure S2. TEM images of the 1.0 wt%  $Ag/Ga_2O_3(PD)$  sample as-prepared (a), heated at 673 K for 2 h in air (b) and HAADF-STEM image of the 1.0 wt%  $Ag/Ga_2O_3(PD)$  sample heated at 673 K for 2 h in air (c).

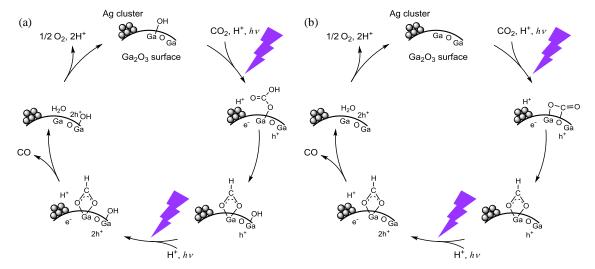



Figure S3. Tentatively proposed reaction schemes for the photocatalytic reduction of  $CO_2$  with water over 0.1 wt%  $Ag/Ga_2O_3$  sample. These schemes were proposed on the basis of the FT-IR results of this study and our previous study. The reactions start with the adsorption of  $CO_2$  on a surface OH group (a) and on the surface lattice oxygen (b).

## Reference

1 M. Yamamoto, T. Yoshida, N. Yamamoto, H. Yoshida and S. Yagi, J. Surf. Sci. Nanotechnol., 2014, 12, 299.