Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Synthesis of Thin Film AuPd Alloys and their Investigation for Electrocatalytic CO₂ Reduction

Christopher Hahn†‡, David N. Abram†, Heine A. Hansen‡, Toru Hatsukade†, Ariel Jackson¹,

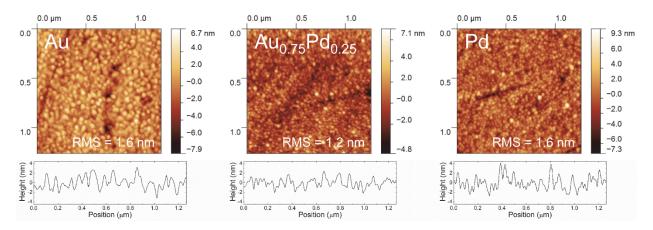
Natalie C. Johnson§, Thomas R. Hellstern†, Kendra P. Kuhl¶, Etosha R. Cave¸, Jeremy T.

Feaster†, and Thomas F. Jaramillo†‡*

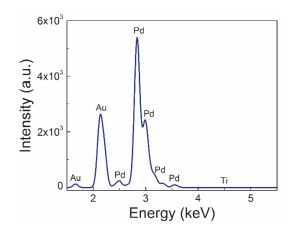
†Department of Chemical Engineering, Stanford University, California 94305

*SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory,

Menlo Park, California 94025


¹Department of Materials Science and Engineering, Stanford University, California 94305

§Department of Geological and Environmental Sciences, Stanford University, California, 94305


Department of Chemistry, Stanford University, California, 94305

^vDepartment of Mechanical Engineering, Stanford University, California, 94305

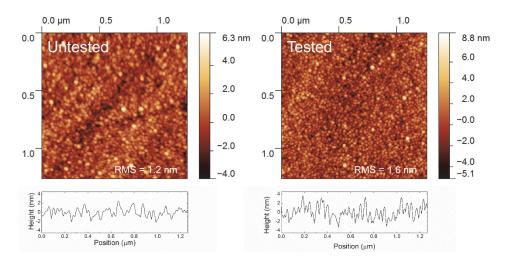

*Address correspondence to <u>jaramillo@stanford.edu</u>

Figure SI1. AFM images of AuPd thin films, revealing their RMS roughness values. The graphs below each AFM image correspond to a horizontal line scan across the sample.

Figure S12. EDS spectrum of AuPd thin film sample F. No Ti signal was detected within the AuPd layer.

Figure SI3. AFM images of a AuPd thin film before and after electrochemical testing. Quantitative analysis confirms that the "Untested" and "Tested" regions have a similar RMS roughness values after testing, indicating that the sample retains a similar surface area.