Supporting information for

Nickel Nanoparticle/Carbon Quantum Dot hybrid as Efficient Electrocatalyst for Hydrogen Evolution under Alkaline Condition

Yanmei Yang, Juan Liu, Sijie Guo, Yang Liu* and Zhenhui Kang*

Jiangsu Key Laboratory for Carbon-Based Functional

Materials & Devices, Institute of Functional Nano & Soft

Materials (FUNSOM), Soochow University, 199 Ren'ai Road,

Suzhou, 215123, Jiangsu, PR China.

E-mail: yangl@suda.edu.cn; zhkang@suda.edu.cn

Tel: +86 512 65880957

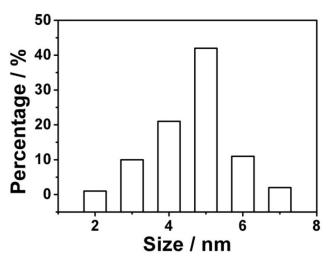
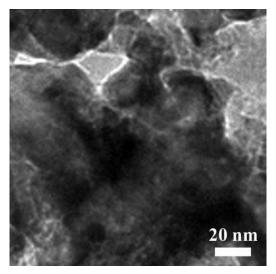



Figure S1 Size distribution histogram of CQDs.

Figure S2 Typical TEM image of sample prepared from pyrolysis of physical mixture of $Ni(OH)_2$ with CQDs.

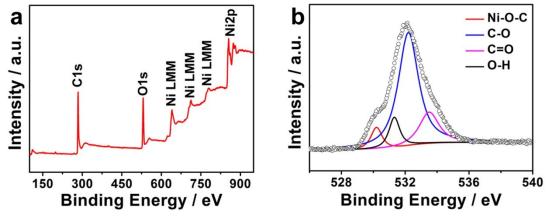
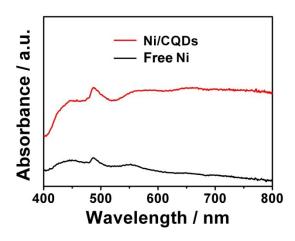



Figure S3 (a) Full XPS scan and (b) high resolution O1s XPS spectrum of Ni/CQDs.

Figure S4 UV-vis absorption spectra of Ni/CQDs (the red trace) and free Ni (the black trace) catalysts.

Table S1 The exchange current density of Ni/CQDs, free Ni, and CQDs.

Samples	CQDs	Free Ni	Ni/CQDs
j_0 / mA·cm ⁻²	0.0006	0.0262	0.4467

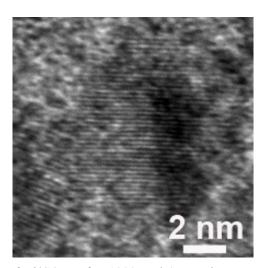


Figure S5 HRTEM image of Ni/CQDs after 1000 cycle's reaction.

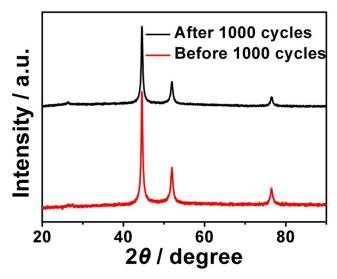


Figure S6 XRD spectra of Ni/CQDs before and after 1000 cycle's reaction.

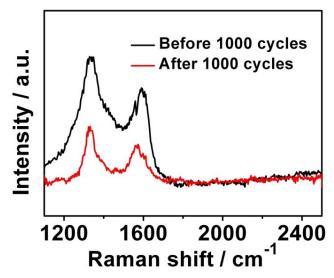
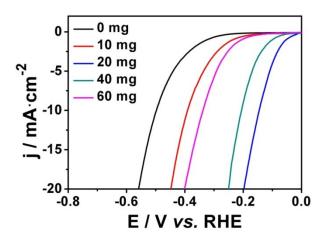
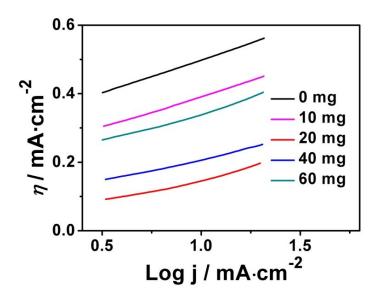




Figure S7 Raman spectra of Ni/CQDs before and after 1000 cycle's reaction.

Figure S8 Polarization curves of HER on Ni/CQDs with various CQDs amounts: 0 mg, 10 mg, 20 mg, 40 mg, and 60 mg.

Figure S9 Tafel plots for the HER on Ni/CQDs with various CQDs amounts: 0 mg, 10 mg, 20 mg, 40 mg, and 60 mg.

Table S2 The exchange current density of Ni/CQDs prepared with various CQDs amounts.^a

CQDs amount / mg	0	10	20	40	60
j_0 / mA·cm ⁻²	0.0262	0.0711	0.4467	0.1570	0.0556

^aAll samples were prepared by pyrolysis at 500 °C.

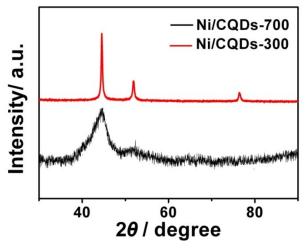


Figure S10 XRD spectra of Ni/CQDs-300 and Ni/CQDs-700.

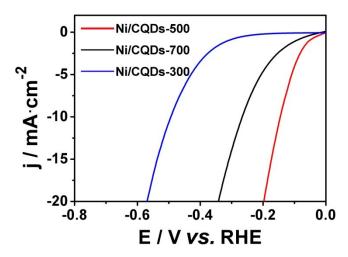


Figure S11 Polarization curves of HER on Ni/CQDs-300, Ni/CQDs-500, and Ni/CQDs-700.

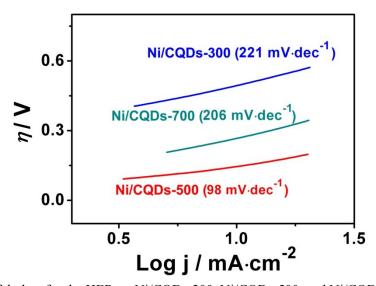


Figure S12 Tafel plots for the HER on Ni/CQDs-300, Ni/CQDs-500, and Ni/CQDs-700.

Table S3 The exchange current density of Ni/CQDs prepared at various temperatures.^a

Temperature / °C	300	500	700
j ₀ / mA·cm ⁻²	0.0711	0.4467	0.3858

^aAll samples were prepared from 20 mg CQDs.

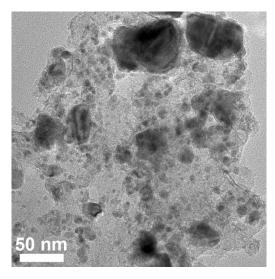


Figure S13 Typical TEM image of Ni/CQDs-700.

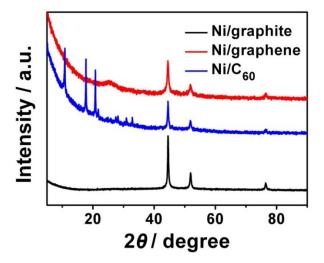


Figure S14 XRD spectra of Ni/C₆₀, Ni/grapheme, and Ni/graphite.

Figure S15 Typical TEM images of Ni/ C_{60} , which was prepared from 20 mg C_{60} .

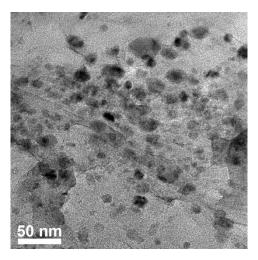


Figure S16 Typical TEM images of Ni/graphene, which was prepared from 20 mg graphene.

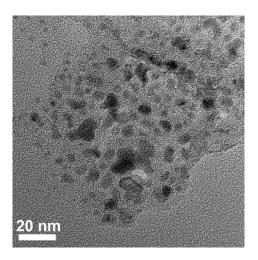
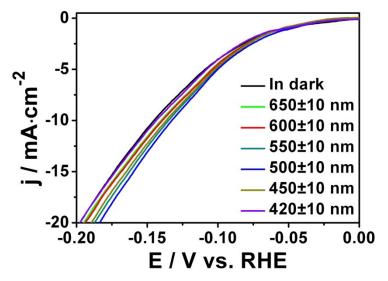



Figure S17 Typical TEM images of Ni/graphite, which was prepared from 20 mg graphite.

Figure S18 Polarization curves of HER on Ni/CQDs modified electrode illuminated under various wavelengths.