Electronic Supporting Information for

A "H₂O donating/methanol accepting" platform for preparation of highly selective Nafion-based proton exchange membranes

Kai Feng, Beibei Tang* and Peiyi Wu*

State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China.

E-mail: bbtang@fudan.edu.cn and peiyiwu@fudan.edu.cn. Tel.: +86-21-65643255. Fax: +86-21-65640293.

1.

Fig. S1 Schematic illustration of the home-made equipment used to characterize the methanol permeability of PEMs.

Fig. S2 (A) A digital photo of the whole set used to characterize the methanol permeability of PEMs; (B-D) Magnified observation of some important components, such as the PTFE mould, ZnS crystal and rubber washer, *etc.*; (E-F) Digital photos of the assembly of different components as illustrated in Fig. S1.

Fig. S3 Digital photos of the recast Nafion, 0.5~2.0 wt% SiO₂@sPS+Nafion and 1.0 wt% h-

sPS+Nafion membranes.

Composite PEMs	Proton conductivity (S/cm)	Conditions	Publications
MMT-SO ₃ H (1, 4-BS) + Nafion	0.081	30°C-98%RH	
	0.11	50°C-98%RH	
MMT SO $H(1, 2, DS) + Neffer$	0.075	30°C-98%RH	1
MM1-SU ₃ H $(1, 3-PS)$ + Nation	0.112	50°C-98%RH	1
MMT SO H (EMES) + Nafion	0.088	30°C-98%RH	
MMI-SO ₃ H (FMES) + Nation	0.128	50°C-98%RH	
	0.0025	25°C-50%RH	
	0.0035	25°C-60%RH	
	0.0045	25°C-70%RH	
	0.016	25°C-80%RH	
	0.022	25°C-90%RH	
Laponite-SO ₃ H + Nafion	0.028	25°C-95%RH	2
	0.03	25°C-98%RH	
	0.039	50°C-98%RH	
	0.052	65°C-98%RH	
	0.07	80°C-98%RH	
	0.082	95°C-98%RH	
PSSA-Nafion	0.032	r.t100%RH	3
	0.088	40°C-95%RH	
	0.101	50°C-95%RH	
	0.115	60°C-95%RH	
mesoporous SiO ₂ -SO ₃ H + Nafion	0.125	70°C-95%RH	4
	0.127	80°C-95%RH	
	0.113	90°C-95%RH	
	0.108	100°C-95%RH	
Nafion + Sulfonated poly(propylene oxide) oligomers	0.104	r.t100%RH	5
	0.0125	10°C-100%RH	
	0.014	20°C-100%RH	
	0.016	30°C-100%RH	6
Sulfonated β evaluation + Nation	0.019	40°C-100%RH	
Sunonated p-cyclodextrin + Nanon	0.021	50°C-100%RH	
	0.023	60°C-100%RH	
	0.026	70°C-100%RH	
	0.029	<u>80°C-100%RH</u>	
zeolite beta- $SO_{2}H + Nation$	0.047	21°C-100%RH	7
$2 \text{control octa-} \text{SO}_3 \Pi + \text{INATION}$	0.067	80°C-100%RH	/
	0.048	30°C-90%RH	8
	0.103	30°C-100%RH	
Polysilsesquioxane-SO ₃ H + Nafion	0.123	50°C-100%RH	
	0.145	70°C-100%RH	
	0.152	80°C-100%RH	
	0.09	80°C-90%RH	
	0.014	80°C-40%RH	
	0.02	120°C-40%RH	
	0.16	120°C-90%RH	

Table S1 Detailed information about the optimized proton conductivity of Nafion-based PEMs modified by various other sulfonated materials.

Table S1 (continued)					
Composite PEMs	Proton conductivity (S/cm)	Conditions	Publications		
MWCNT-SO ₃ H + Nafion	0.082	25°C-100%RH	9		
	0.086	40°C-100%RH			
	0.085	60°C-100%RH			
	0.058	80°C-100%RH			
	0.030	100°C-100%RH			
	0.027	120°C-100%RH			
	0.083	<u>30°C-100%RH</u>			
	0.103	40°C-100%RH			
	0.125	50°C-100%RH			
	0.155	60°C-100%RH			
SiO_2 - SO_3H + Nafion	0.175	70°C-100%RH	10		
	0.200	80°C-100%RH			
	0.079	80°C-40%RH			
	0.207	90°C-100%RH			
	0.218	100°C-100%RH			
	0.039	60°C-60%RH			
mesoporous SiO_2 - SO_3H + Nafion	0.08	60°C-80%RH	11		
	0.13	60°C-98%RH			
Montmorillonite-SO ₃ H + Nafion	0.08	30°C-98%RH			
	0.106	50°C-98%RH	12		
	0.141	75°C-98%RH			
	0.161	90°C-98%RH			
mesoporous SiO ₂ -SO ₃ H + Nafion	0.013	r.t100%RH	13		
Laponite-PSSA + Nafion	0.011	25°C-100%RH			
	0.03	55°C-100%RH	14		
	0.05	85°C-100%RH			

Table S1 (continued)					
Composite PEMs	Proton conductivity (S/cm)	Conditions	Publications		
Zro, So II - Nafar	0.0077	80°C-20%RH			
	0.0336	80°C-50%RH			
	0.0684	80°C-70%RH			
210_2 - 30_3 H + Malloll	0.0063	120°C-20%RH			
	0.0448	120°C-50%RH			
	0.0965	120°C-70%RH			
	0.0066	80°C-20%RH			
	0.0259	80°C-50%RH			
CDA15 + NLC	0.0482	80°C-70%RH			
SBA15 + Nation	0.0065	120°C-20%RH			
	0.0429	120°C-50%RH			
	0.0883	120°C-70%RH			
	0.0058	80°C-20%RH			
	0.028	80°C-50%RH			
	0.0504	80°C-70%RH			
MCM41 + Nation	0.0053	120°C-20%RH			
	0.0337	120°C-50%RH			
	0.0718	120°C-70%RH			
	0.0026	80°C-20%RH			
	0.023	80°C-50%RH			
	0.0394	80°C-70%RH			
$Si-SO_3H + Nation$	0.0039	120°C-20%RH	15		
	0.0268	120°C-50%RH			
	0.0586	120°C-70%RH			
	0.010	80°C-20%RH			
	0.0391	80°C-50%RH			
	0.0622	80°C-70%RH			
Phosphosilicate + Nafion (P:S=0.5)	0.0022	1200C-20%RH			
	0.051	120 C 20%RH			
	0.1035	120 C-30%RH			
	0.0056	80°C-20% RH			
	0.026	80°C-50%RH			
	0.020	80°C-70%RH			
Phosphosilicate + Nafion (P:S=1)	0.0042	1200C-20%RH			
	0.0363	120 C-20%RH			
	0.0798	120 C-30%RH			
	0.0069	80°C-20% RH			
	0.0298	80°C-50%RH			
	0.0278	80°C-70%RH			
Phosphosilicate + Nafion (P:S=1.5)	0.0027	1200C-20%RH			
	0.0402	120 C-2070RH			
	0.0402	120°C-3070KII			
		$120^{\circ}C - 10^{\circ}0K\Pi$			
TO SO U Nofice	0.03	100°C-40%KH	16		
110_2 - 30_3 H + Nation	0.18	100°C-100%KH	10		
		$-120^{\circ}\text{C}-40^{\circ}\text{KH}$			
Al-MSU-F + Nafion	0.124	30°C-100%KH			
	0.134	80°C-100%KH			
Al-HMS + Nafion	0.125	50°C-100%KH	17		
	0.148	80°C-100%RH			
Al-MCM-41 + Nafion	0.185	30°C-100%RH			
	0.291	80°C-100%RH			

	Table S1 (continued)		
Composite PEMs	Proton conductivity (S/cm)	Conditions	Publications
PSSA-g-PVDF + Nafion	0.064	20°C-95%RH	
	0.072	40°C-95%RH	
	0.082	60°C-95%RH	18
	0.093	80°C-95%RH	
	0.106	95°C-95%RH	
SiO ₂ @sPS + Nafion	0.196	25°C-100%RH	
	0.216	30°C-100%RH	
	0.249	50°C-100%RH	
	0.253	70°C-100%RH	This work
	0.260	90°C-100%RH	
	0.0216	100°C-40%RH	
h-sPS + Nafion	0.0285	100°C-40%RH	
h-sPS + Nation	0.0285	100°C-40%RH	

Notes and references

- 1 Y. Kim, J. S. Lee, C. H. Rhee, H. K. Kim and H. Chang, J. Power Sources, 2006, 162, 180-185.
- 2 P. Bébin, M. Caravanier and H. Galiano, J. Membr. Sci., 2006, 278, 35-42.
- 3 B. Bae, H. Y. Ha and D. Kim, J. Membr. Sci., 2006, 276, 51-58.
- 4 Y. Tominaga, I. C. Hong, S. Asai and M. Sumita, J. Power Sources, 2007, 171, 530-534.
- 5 Y.-F. Lin, Y.-H. Hsiao, C.-Y. Yen, C.-L. Chiang, C.-H. Lee, C.-C. Huang and C.-C. M. Ma, J. Power Sources, 2007, **172**, 570-577.
- 6 J. D. Jeon and S. Y. Kwak, J. Power Sources, 2008, 185, 49-54.
- 7 B. A. Holmberg, X. Wang and Y. Yan, J. Membr. Sci., 2008, 320, 86-92.
- 8 K. Xu, C. Chanthad, M. R. Gadinski, M. A. Hickner and Q. Wang, ACS Appl. Mater. Interfaces, 2009, 1, 2573-2579.
- 9 R. Kannan, M. Parthasarathy, S. U. Maraveedu, S. Kurungot and V. K. Pillai, *Langmuir*, 2009, 25, 8299-8305.
- 10 G. Gnana Kumar, A. R. Kim, K. Suk Nahm and R. Elizabeth, *Int. J. Hydrogen Energy*, 2009, **34**, 9788-9794.
- 11 Y. Choi, Y. Kim, H. K. Kim and J. S. Lee, J. Membr. Sci., 2010, 357, 199-205.
- 12 Y. Kim, Y. Choi, H. K. Kim and J. S. Lee, J. Power Sources, 2010, 195, 4653-4659.
- 13 C. H. Tsai, H. J. Lin, H. M. Tsai, J. T. Hwang, S. M. Chang and Y. W. Chen-Yang, *Int. J. Hydrogen Energy*, 2011, **36**, 9831-9841.
- 14 K. Fatyeyeva, C. Chappey, F. Poncin-Epaillard, D. Langevin, J.-M. Valleton and S. Marais, J. Membr. Sci., 2011, 369, 155-166.
- 15 C. M. Wang, E. Chalkova, J. K. Lee, M. V. Fedkin, S. Komarneni and S. N. Lvov, J. Electrochem. Soc., 2011, 158, B690-B697.
- 16 Y. Jun, H. Zarrin, M. Fowler and Z. Chen, Int. J. Hydrogen Energy, 2011, 36, 6073-6081.
- 17 S. Meenakshi, A. K. Sahu, S. D. Bhat, P. Sridhar, S. Pitchumani and A. K. Shukla, *Electrochim. Acta*, 2013, **89**, 35-44.
- 18 H. Y. Li, Y. Y. Lee, J. Y. Lai and Y. L. Liu, J. Membr. Sci., 2014, 466, 238-245.