Electronic Supplementary Information (ESI) for

Porous CoP concave polyhedron electrocatalysts synthesized from metal-organic frameworks with enhanced electrochemical properties for hydrogen evolution

Miao Xu^{a,b}, Lei Han^{a,b}, Yujie Han^{a,b}, You Yu^{a,b}, Junfeng Zhai^a and Shaojun Dong^{a,b*}

^a State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of applied

Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022 (PR China)

^b University of Chinese Academy of Sciences, Beijing, 100049 (PR China)

E-mail: dongsj@ciac.ac.cn

Fig. S1 XPS survey spectrum of the porous CoP CPHs.

Fig. S2 HRTEM images of the porous CoP CPHs.

Fig. S3 HAADF-STEM (A) and elemental mapping images (B, C) of the as-prepared

porous CoP CPHs.

Fig. S4 HRTEM image of the porous Co₃O₄ CPHs.

Fig. S5 SEM images of the contrastive (A) Co₃O₄ and (B) CoP NPs.

Fig. S6 Enlargement of polarization curves of bare GCE, Pt/C, CoP NPs and the porous CoP CPHs in 0.5 M H_2SO_4 at the scan rate of 2 mV s⁻¹.

Fig. S7 Nyquist plots of electrochemical impedance spectra of CoP NPs (a) and the porous CoP CPHs (b) in 0.5 M H₂SO₄ at $\eta = 200$ mV.

Fig. S8 Calculation of exchange current density of Pt/C, CoP NPs and the porous CoP CPHs.

Catalyst	η_{10} (mV vs. RHE) ^a	Tafel slope (mV/dec)	<i>j</i> 0 (mA cm ⁻²) ^b	Ref.
CoP microspheres	226	76	1.9×10^{-2}	20
Porous FeP nanosheets	~240	67		11
MoP	135	54	3.4 × 10 ⁻²	42
Ni ₂ P nanoparticles	~225	86		43
Amorphous WP nanoparticles	120			44
Bulk WP	~200			44
Cu ₃ P nanowire/CF	143	67	1.8× 10 ⁻¹	14
Cu ₃ P microparticle/CF	~200	96	$4.0 imes 10^{-2}$	14
Ni ₂ P nanorods/GC	~280	115	5.1 × 10 ⁻⁵	45
Co ₂ P nanorods/GC	~150	53	1.7×10^{-5}	45
WS ₂ nanoribbons	225	68	~1.0 × 10 ⁻²	40
Defect-rich MoS ₂ nanosheets	~190	50	8.91 × 10 ⁻³	41
Bulk Mo ₂ C	208	56	1.3×10^{-3}	46
Bulk MoB	212	55	1.4 × 10 ⁻³	46
MoN/C		54.5	3.6×10^{-2}	47
NiMoN _x /C		35.9	2.4× 10 ⁻¹	47
CoP CPHs	133	51	4.4 × 10 ⁻²	Our work

 Table S1 Comparison of various HER elecatalysts.

^a the overpotential where the current density is 10 mA cm⁻² ^b the exchange current density

Fig. S9 The current-time curve of the CoP CPHs measured at an over potential of 200 mV in 0.5 M H_2SO_4 .

Fig. S10 SEM image (A), TEM image (B), XRD pattern (C), EDX pattern (D), high resolution Co (E) and P (F) XPS spectra of the recycling CoP CPHs after the stability test. The EDX pattern was obtained by dropping the sample on ITO.

Element	before		after		
	Wt %	At %	Wt %	At %	
Со	57.87	35.61	23.28	13.78	
Р	32.37	37.9	13.22	14.89	
atomic ratio of Co and P	1:1.06		1:1.08		

Table S2 The element compositions of the as-prepared CoP CPHs before and afterelectrocatalysis from the EDX.