Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Harvesting broadband absorption of solar spectrum for enhanced photocatalytic H₂ generation

Connor Peh Kang Nuo, Minmin Gao and Ghim Wei Ho^{a,b,c,*}

^a Engineering Science Programme, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore

^b Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore

^c Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, 117602, Singapore.

*Corresponding author: Dr. Ghim Wei Ho

Email: <u>elehgw@nus.edu.sg</u>

SUPPORTING INFORMATION

Figure S1 Schematic diagram showing the energy band positions of TiO_2 , CuO with respect to standard hydrogen electrode (SHE) at pH 1, and transfer of electron from the conduction band of TiO_2 to CuO. The E_{CB} of TiO_2 (anatase) is -0.25 V vs SHE¹, and the E_{CB} of CuO is 0.96 V vs SHE².

Figure S2 Nitrogen adsorption/desorption isotherms of (a) NP, (b) 3% CuO-NP, (c) NT and (d) 3% CuO-NT with (insets) corresponding BJH pore size distribution.

Temperature (°C)		H ₂ evolution rate (mmol/gh)		
	NP	3%CuO-NP	ΝΤ	3%CuO-NT
25.0	0.0750	4.02	0.101	5.40
50.0	0.277	8.96	0.508	14.1
75.0	0.858	15.8	1.53	20.2
90.0	1.50	20.9	3.92	35.2

Table S1 H_2 evolution rate for different photocatalysts at different temperatures.

Figure S3 Temperature measurement of NT and CuO-NT in 20% vol glycerol solution under Xe Lamp illumination at 1000W/m².

Figure S4 Initial rates of H_2 evolution for cyclic stability test of (a) NP and 3%CuO-NP; (b) NT and 3%CuO-NT at 90°C

Figure S5 (a) Amount of H_2 evolved for cyclic stability test under Xe irradiation, measured for 4 cycles. (b) Initial rates of H_2 evolution for cyclic stability test of 3%CuO-NP and 3%CuO-NT

References

- S. Burnside, J.-E. Moser, K. Brooks, M. Grätzel and D. Cahen, J. Phys. Chem. B, 1999, 103, 9328-9332.
- 2. Y. Xu, M. A. A. Schoonen, Am. Mineral., 2000, 85(3-4), 543–556.