Supporting Information for

Facile synthesis of high performance hard carbon anode

materials for sodium ion batteries

Ning Sun, Huan Liu and Bin Xu*

Scheme 1. Schematic diagram for the synthetic process of the shaddock peel-derived pyrolytic carbons.

Figure S1 X-ray photoelectron spectroscopy survey spectra of the pyrolytic carbons.

Figure S2 HRTEM images of the SP-800 sample before (a) and after initial discharge/charge cycling (b), and comparison of FTIR analysis of the SP-800 sample before and after cycling (c).

Figure S3 The initial discharge/charge profiles of the pyrolytic carbons at 30mA g⁻¹ (a-b), schematic illustration of the sodium ion insertion mechanism (c), and summary of discharge capacity above and below 0.1 V of the SP-X samples in the initial cycle at 30 mA g⁻¹ (d), EIS of the as-prepared SP-X electrodes with the equivalent circuit diagram in the inset (e), and comparison of impedance of the SP-X electrodes collected from Nyquist diagram (f).

Figure S4 Cycle performance of the pyrolytic carbons at a current load of 500 mA g⁻¹.

Figure S5 Charge/discharge profiles (a-g) and summary of discharge capacity above and below 0.1 V of the pyrolytic carbons (h-n) in the fifth cycle at different current densities.

Figure S6 Comparison of the capacity change of the plateau and sloping region of the pyrolytic carbons at different current densities.

	Samples	C / at %	O / at %	N / at %	Cl / at %
	SP-800	91.08	6.32	1.97	0.63
	SP-1000	94.89	3.83	1.28	-
	SP-1200	96.98	3.02	-	-
	SP-1400	97.53	2.47		-
•					

 $\label{eq:table_state} \textbf{Table S1} \ \textbf{Element composition of the pyrolytic carbons by XPS}$

Table S2 Performance comparison of SP-1200 versus state-of-the-art anode carbons of SIBs reported in literature.

Material	Initial coulombic efficiency(%)	Initial reversible capacity	Cyclability (reversible capacity)	Citation
SP-1200	67.7	430 mA h g ⁻¹ at 30 mA g ⁻¹ ; 370 mA h g ⁻¹ at 50 mA g ⁻¹	352 mA h g^{-1} at 50 mA g^{-1} over 200 cycles	This work
Templated carbon	~14	180 mAh g ⁻¹ at 74.4 mA g ⁻¹	130 mAh g ⁻¹ over 40 cycles	[1]
Hollow carbon nanowires	50.5	251 mAh g ⁻¹ at 50 mA g ⁻¹	$\begin{array}{cccc} 206.3 & mAh & g^{-1} & over & 400 \\ cycles & \end{array}$	[2]
Hollow carbon nanospheres	41	223 mAh g ⁻¹ at 50 mA g ⁻¹	~160 mAh g ⁻¹ at 100mA g ⁻¹ over 100 cycles	[3]
Carbon nanofiber	58	255 mAh g ⁻¹ at 40 mA g ⁻¹	176 mAh g^{-1} at 200 mA g^{-1} over 600 cycles	[4]
Nitrogen-Doped Porous Carbon Nanosheets	34.8	349 mAh g ⁻¹ at 50 mA g ⁻¹	200 mAh g ⁻¹ over 50 cycles	[5]
Reduced graphene oxide	~25	~400 mAh g ⁻¹ at 40 mA g ⁻¹	174.3 mAh g ⁻¹ over 250 cycles	[6]
Carbon nanosheet frameworks	54	298 mAh g ⁻¹ at 50 mA g ⁻¹	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	[7]
Expanded graphite	49.5	284 mAh g ⁻¹ at 20 mA g ⁻¹	184 mAh g^{-1} at 100mA g^{-1} over 2000 cycles	[8]
Carbon fiber	58.2	250 mAh g ⁻¹ at 50 mA g ⁻¹	233 mAh g ⁻¹ over 200 cycles	[9]
Sphere carbon	62	160 mA h g ⁻¹ at 150 mA g ⁻¹	90 mAh g ⁻¹ over 50 cycles	[10]
Highly Disordered Carbon	57.6	246 mAh g ⁻¹ at 100mA g ⁻¹	225 mAh g ⁻¹ over 180 cycles	[11]
Mesoporous carbon	39.9	164 mAh g ⁻¹ at 100 mA g ⁻¹	125 mAh g ⁻¹ over 100cycles	[12]
Carbon microspheres	30~40	202 mAh g ⁻¹ at 30 mA g ⁻¹	183 mAh g ⁻¹ over 50cycles	[13]
Hard Carbon/Carbon Nanotube Composites	61	300 mAh g ⁻¹ at 20 mA g ⁻¹	280 mAh g ⁻¹ over 50 cycles	[14]
Hierarchically Porous Carbon/Graphene Composite	~30	670 mA h g $^{-1}$ at 50 mA g $^{-1}$	400 mAh g ⁻¹ over 100 cycles	[15]
Hard carbon derived from Banana	68	~360 mA h g $^{-1}$ at 50 mA g $^{-1}$	330 mAh g^{-1} at 100mA g^{-1} over 50 cycles	[16]
Porous hard carbon	27	287 mA h g ⁻¹ at 50 mA g ⁻¹	181 mA h g ⁻¹ at 200mA g ⁻¹ over 220cycles	[17]
Hard carbon micro-spherules	83	311 mA h g ⁻¹ at 30 mA g ⁻¹	290 mA h g ⁻¹ over 220 cycles	[18]
Graphene oxide doped hard carbon	83	289 mA h g ⁻¹ at 20 mA g ⁻¹	220 mA h g ⁻¹ over 200 cycles	[19]
Mesoporous carbon	36	\sim 330 mAh g ⁻¹ at 50mA g ⁻¹	260 mAh g ⁻¹ over 100cycles	[20]

References

- 1. S. Wenzel, T. Hara, J. Janek and P. Adelhelm, *Energy & Environmental Science*, 2011, **4**, 3342-3345.
- Y. Cao, L. Xiao, M. L. Sushko, W. Wang, B. Schwenzer, J. Xiao, Z. Nie, L. V. Saraf, Z. Yang and J. Liu, *Nano letters*, 2012, 12, 3783-3787.

- K. Tang, L. Fu, R. J. White, L. Yu, M.-M. Titirici, M. Antonietti and J. Maier, *Advanced Energy Materials*, 2012, 2, 873-877.
- W. Luo, J. Schardt, C. Bommier, B. Wang, J. Razink, J. Simonsen and X. L. Ji, *Journal of Materials Chemistry A*, 2013, 1, 10662-10666.
- H. G. Wang, Z. Wu, F. L. Meng, D. L. Ma, X. L. Huang, L. M. Wang and X. B. Zhang, *ChemSusChem*, 2013, 6, 56-60.
- 6. Y.-X. Wang, S.-L. Chou, H.-K. Liu and S.-X. Dou, *Carbon*, 2013, **57**, 202-208.
- H. Jia Ding, Zhi Li Alireza Kohandehghan, Kai Cui, Zhanwei Xu, ACS Nano, 2013, 7, 11104-11015.
- 8. Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings and C. Wang, *Nature communications*, 2014, **5**, 4033-4042.
- 9. T. Chen, Y. Liu, L. Pan, T. Lu, Y. Yao, Z. Sun, D. H. C. Chua and Q. Chen, *Journal of Materials Chemistry A*, 2014, **2**, 4117-4121.
- V. G. Pol, E. Lee, D. Zhou, F. Dogan, J. M. Calderon-Moreno and C. S. Johnson, *Electrochimica Acta*, 2014, 127, 61-67.
- 11. X. Zhou and Y.-G. Guo, *ChemElectroChem*, 2014, 1, 83-86.
- 12. J. Liu, H. Liu, T. Yang, G. Wang and M. O. Tade, *Chinese Science Bulletin*, 2014, **59**, 2186-2190.
- 13. T. Chen, L. Pan, T. Lu, C. Fu, D. H. C. Chua and Z. Sun, *J. Mater. Chem. A*, 2014, **2**, 1263-1267.
- 14. R. Suresh Babu and M. Pyo, *Journal of the Electrochemical Society*, 2014, **161**, A1045-A1050.
- 15. Y. Yan, Y. X. Yin, Y. G. Guo and L. J. Wan, *Advanced Energy Materials*, 2014, 4, 1301584.
- E. M. Lotfabad, J. Ding, K. Cui, A. Kohandehghan, W. P. Kalisvaart, M. Hazelton and D. Mitlin, ACS Nano, 2014, 8, 7115-7129.
- K. L. Hong, L. Qie, R. Zeng, Z. Q. Yi, W. Zhang, D. Wang, W. Yin, C. Wu, Q. J. Fan, W. X. Zhang and Y. H. Huang, *Journal of Materials Chemistry A*, 2014, 2, 12733-12738.
- Y. Li, S. Xu, X. Wu, J. Yu, Y. Wang, Y.-S. Hu, H. Li, L. Chen and X. Huang, J. Mater. Chem. A, 2015, 3, 71-77.
- 19. W. Luo, C. Bommier, Z. Jian, X. Li, R. Carter, S. Vail, Y. Lu, J. J. Lee and X. Ji, ACS Applied Materials & Interfaces, 2015, 7, 2626-2631.
- 20. Z. Guan, H. Liu, B. Xu, X. Hao, Z. Wang and L. Chen, J. Mater. Chem. A, 2015, 3, 7849-7854.