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Table S1. Chemical composition of GeO,/N-C.

Weight Content (wt%)
Sample
N C H Sulfur GeO,
Geocz/N' 1.22 15.86 0.22 0 82.7

*The weight contents of nitrogen, carbon, hydrogen, and oxygen were determined by elemental
analysis (CHNS). The remaining content was GeQO,. This value is in good agreement with the
TG data.
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Fig. S1 Thermo-gravimetric (TG) analysis of (a) PVP and (b) mixture of GeO,-PVP with a
weight ratio of 2:1. (c¢) Derivative Thermogravimetric (DTG) analysis of PVP.

Thermo-gravimetric (TG) analysis of the samples was performed to study the thermal
decomposition behavior of PVP and GeO,/PVP. Fig. S1 shows the TG curves of PVP and
GeO,/PVP obtained at a heating rate of 10 °C min'! under argon flux of 50 ml min'. For the
PVP (Fig. S1a), the weight loss observed below 100 °C was attributed to the moisture removal.
The subsequent weight loss corresponded to the decomposition of PVP. The weight loss started
at around 298 °C and continued up to 482 °C with 91.9% weight loss, leaving only residual
carbon. The dramatic weight loss observed in the TG curve is attributed to the result of the
break-down of the side groups of PVP.! According to Imre et al.,> the main gases evolved during
the decomposition of PVP were CO,, H,O, NO, and NO,. This phenomenon was also confirmed

by a very sharp endothermic peak observed at 442 °C in the DTG curve (Fig. S1c). Herein, the



TG behavior of GeO,/PVP (Fig. S1b) was similar to that of PVP. According to the observed
thermal behavior of GeO,/PVP, the annealing temperature for the decomposition of GeO, in the
PVP matrix to prepare GeO,/N-C was fixed to 500 °C. At a higher temperature, the particle size

of GeO, could become larger due to the agglomeration of GeO, at an elevated temperature.
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Fig. S2 Particle size distribution of GeO,, prepared by sol-gel method, obtained from the DLS
measurement.

The dynamic light scattering (DLS) measurement of the transparent colloidal dispersion
exhibited a narrow size distribution of GeO, synthesized using the sol-gel method. As observed
in Fig. S2, the particle size of GeO, was uniform with a diameter ranging from 8 to 12 nm, and

the average diameter obtained from the DLS method was 10 + 2 nm.
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Fig. S3 Raman spectra of (a) GeO, and (b) GeO,/N-C.

As shown in Fig. S3a (Raman shift of GeO,), all peaks matched well with the vibration of
GeO,. The bands observed at 879 and 963 cm™! corresponded to the Ge-O stretching, while the
peaks observed at 519 and 576 cm™ were attributed to the stretching of Ge-Ge. The band
observed at 446 cm! corresponded to the symmetric Ge-O-Ge stretching, and the two bands

observed at 164 and 260 cm™! were related to the rotation of the GeOy, tetrahedra.?
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Fig. S4 High-resolution XPS core spectrum of Ge for the 3d level of GeO,/N-C.
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Fig. S5 N, adsorption/desorption isotherms of the samples (a) GeO, and (b) GeO,/N-C. The inset
fig.s show pore size distribution calculated using the Barrett-Joyner-Halenda (BJH) formula.
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Fig. S6 Thermo-gravimetric analysis of GeO,/N-C in air at a heating rate of 10 °C min‘!.
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Fig. S7 XRD patterns of GeO, electrodes measured at the different states of discharge in the first

cycle; (a) as-prepared, (b) discharged to 0.75 V, (c) discharged to 0.50 V, (c) discharged to 0.25

V, and (d) discharged to 0.01V. XRD patters of GeO,/N-C electrodes tested after 50 cycles; (f)

fully discharged and (g) fully charged.
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Fig. S8 Cyclability of pyrolysis carbon.

Herein, to investigate the contribution of pure N-carbon derived from PVP (pyrolysis
carbon), we prepared pyrolysis carbon through carbonization of PVP at 500 °C for 1 h in argon
atmosphere. As shown in Fig. S8, the specific capacity of pyrolysis carbon (~ 90 mAh g'!) was

much smaller than that of GeO, based electrodes.
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Fig. S9 Cyclability of GeO, and GeO,/N-C electrodes with the high loading mass of 2 mg cm?2,
measured at the rate of C/2.
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