Supporting Information for

An Efficient Hole Transport Material Based on PEDOT Dispersed with Lignosulfonate: Preparation, Characterization and Performance in Polymer Solar Cells

Yuan Li,*ab and Nanlong Hong, ab

^aSchool of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China ^bState Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China

Table of Contents

Supplemental figures S3
Figure. S1 (Synthetic route of supramolecular ASL polymer)S3
Table S1 (Effect of 1,6-dibromohexane on the molecular weight distributions and
functional group contents of ASL)
Figure. S2 (FT-IR spectra of SL and ASL) ······S3
Figure. S3 (¹ HNMR spectra of SL and ASL) ······S4
Table S2 (The conductivities of PEDOT:PSS-4083 film, PEDOT:SL films and
PEDOT:ASL films with different mass ratio of dopant)S4
Figure. S4 (AFM images of PEDOT:PSS (Baytron PVPAI 4083) film (a), PEDOT:ASL-
1:1 film (b) and PEDOT:ASL-1:2 film (c) after heating (120 $^{\circ}$ C for 20 min). The size of the
images is 3 μm×3 μm) ······S4

Supplemental Figures

Fig. S1 Synthetic route of supramolecular ASL polymer.

Table S1 Effect of 1,6-dibromohexane on the molecular weight distributions and functional group contents of ASL.

Samples	Mw (Da)	Mn (Da)	PDI	Functional group contents	
				-OH (mmol g ⁻¹)	-SO ₃ H (mmol g ⁻¹)
SL	5500	2600	2.12	1.58	1.81
ASL	153000	38200	4.00	0.11	1.52

Figure S2. FT-IR spectra of SL and ASL

Figure S3. ¹HNMR spectra of SL and ASL

Samples	Sheet resistance ($\Omega \square^{-1}$)	Film thickness (nm)	Conductivity (S cm ⁻¹)
PEDOT:PSS-4083	59644	8383	0.02
PEDOT:SL-1:1	180018	1111	0.05
PEDOT:SL-1:2	67150	4964	0.03
PEDOT:SL-1:6	232558	2150	0.02
PEDOT:ASL-1:1	—	—	_
PEDOT:ASL-1:2	—	—	—

Table S2 The conductivities of PEDOT:PSS-4083 film, PEDOT:SL films and PEDOT:ASL filmswith different mass ratio of dopant.

Note: The sheet resistance of the films formed with PEDOT:ASL is too large to test.

Figure S4. AFM images of PEDOT:PSS (Baytron PVPAI 4083) film (a) , PEDOT:ASL-1:1 film (b) and PEDOT:ASL-1:2 film (c) after heating (120 $^{\circ}$ C for 20 min). The size of the images is 3μ m× 3μ m.