Electronic Supplementary Information (ESI)

One-step synthesis of robust nitrogen-doped carbon dots: acidevoked fluorescence enhancement and their application for Fe³⁺ detection

Yang Liu‡^a, Yanan Liu‡^a, Soo-Jin Park^b, Yifan Zhang^b, Taewoo Kim^a, Suhyeong Chae^a, Mira Park^{c*}, Hak-Yong Kim^{a,c**}

^a Department of BIN Convergence Technology, Chonbuk National University, Jeonju 561-756, South Korea

^bDepartment of Chemistry, Inha University, 100 Inharo, Incheon 402-751, South Korea

^cDepartment of Organic Materials and Fiber Engineering, Chonbuk National University, Jeonju 561-756, South Korea

E-mail address: wonderfulmira@jbnu.ac.kr (M. Park)

E-mail address: khy@jbnu.ac.kr (H. Y. Kim)

^{*} Corresponding author: Tel: +82-63-270-2351, Fax: +82-63-270-4249.

^{**} Corresponding author: Tel: +82-63-270-2351, Fax: +82-63-270-4249.

[‡] These authors contributed equally to this work.

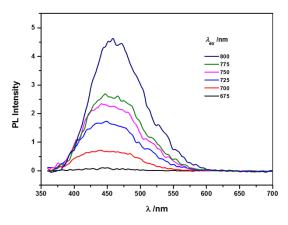
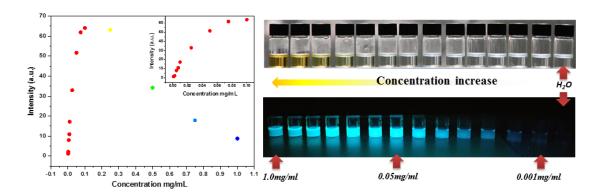
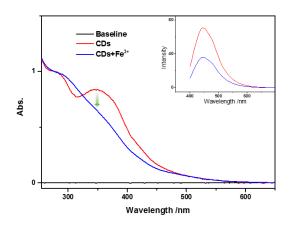



Fig. S1 Up-conversion PL emission spectra of AAeda-CDs dispersed in H₂O.

Fig. S2 PL spectra of the CDs H_2O solution under different concentrations (left). The right photographs of this CDs aqueous solution: under natural light (top) and 365 nm UV light (down) illumination.

Fig. S3 spectroscopic evolution of the pH effect on fluorescence performance of AAeda-CDs: (a) UV-Vis comparison to original AAeda-CDs and (b) PLE optical behaviors.



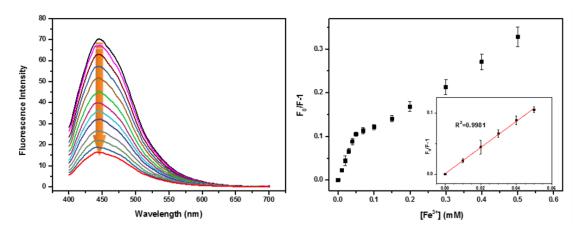

Fig. S4 UV-Vis and PL spectra changes of the CDs ($0.05 \, \text{mg/ml}$) and that after adding of Fe³⁺ ($2.5 \, \text{mM}$).

Table S1 Lifetime data obtained from the time-resolved decay curves of the CDs (0.05mg/ml) and CDs (0.05mg/ml)+Fe³⁺ (2.5mM) mixture ($\lambda_{ex}/\lambda_{em}$ =380nm/450nm)

Sample	τ ₁ (ns)	Percentage (%)	τ ₂ (ns)	Percentage (%)	Average τ (ns)	χ²
CDs	2.33	26.38	10.11	73.62	8.06	1.201
CDs+Fe ³⁺	2.24	27.33	9.96	72.67	7.85	1.166

Table S2. Measurements of Fe³⁺ using the proposed CDs nanosensor and ICP method.

	S1 (Found ± SD, mM)	S2 (Found ± SD, mM)			
This method	0.01668±0.00234	0.04153 ± 0.00249			
ICP	0.01781 ± 0.00168 (0.99476 ± 0.09378 ppm)	0.04275±0.00026 (2.3874±0.01443ppm)			
	(1:11 :: 1 = 3:050; opp.::)	(=:55: := 5/02 : 10 pp)			

Fig. S5 Evolution of the fluorescence spectra of AAeda-CDs (0.05mg/mL) in urban river water upon the addition of various mounts of Fe^{3+} (0–5.0 mM) (pH = 4.0) (left). The relationship between F/F_0 -1 and Fe^{3+} concentrations. The inset shows the linear range of 0.0-0.05 mM (right).