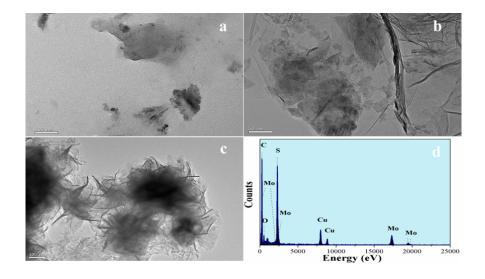
Supporting Information

MoS₂ quantum dots decorated RGO: A Designed Electrocatalysts with High Active Site Density for the Hydrogen Evolution Reaction


Feng Li^{a,b}, Jing Li^{a,b}, Zhuo Cao^b, Xiaoqing Lin^{a,b}, Xinzhe Li^{a,b}, Yiyun Fang^{a,b}, Xincai An^c, Yan Fu^d, Jun Jin^{a,b*} and Rong Li^{a,b*}

Preparation of graphene oxide

Graphene oxide (GO) was prepared from natural graphite using a modified Hummers method.¹ Briefly, graphite powder (1 g) was added to a mixture solution of concentrated H₂SO₄ (120 mL) and H₃PO₄ (13.4 mL). The resultant mixture was stirred and allowed to cool down to below 5 °C. Then 6 g KMnO₄ was added slowly into the mixture solution, The reaction was then heated to 50 ° C and stirred for 12 h, after that the reaction was cooled to room temperature and poured onto ice (400 mL) with 30% H₂O₂ (3 mL). For workup, the mixture washed in succession three times with 200 mL of water, 200 mL of 30% HCl, then the mixture washed with water until pH>6, the last three times with alcohol and ultrasonic 40 min at last. Finally the mixture was vacuum-dried at room temperature.

Preparation of reduced graphene oxide

Briefly, 100 mg GO was dispersed in 100 mL of NaOH solution (pH=13), after that, 1 mL 85% N₂H₄·H₂O was added into the mixed solution, The reaction was then heated to 100 °C and stirred for 24 h, Product was washed with DI water and methylbenzene several times, and vacuum-dried at room temperature.

Figure S1. TEM image of (a) MoS₂ NS, (b) MoS₂ NS/RGO, (C) MoS₂ NFs/RGO and (d) Energy dispersive X-ray (EDX) analysis of MoS₂ QDs/RGO.

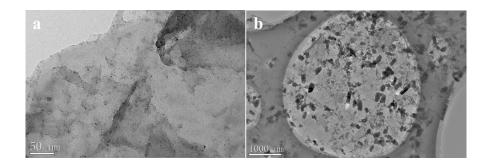


Figure S2. TEM image of (a) MoS₂ QDs/RGO (10:1) and (b) MoS₂ QDs/RGO (15:1)

Table S1. Onset potentials, Tafel slopes, exchange current densities j_0 and TOF value for various catalysts

Catalyst	Oneset potential	Tafel slope b	jo	TOF
	(mV)	(mV dec ⁻¹)	(mA cm ⁻²)	(s ⁻¹)
MoS ₂ NFs/RGO	-0.087	136	0.066	0.137
MoS ₂ NS/RGO	-0.139	112	0.016	0.033
MoS ₂ QDs/RGO	-0.008	63	0.669	1.39
MoS ₂ QDs	-0.102	101	0.023	0.046
Pt/C	-0.003	40	0.999	2.07

Table S2. Summary of representative HER catalysts of MoS_2 (as mentioned in the main text)

Catalyst	Loading	Current	Overpot-	Electrolyte	Reference
	amounts	density	ential	solution	
	(mg cm ⁻²)	(mA cm ⁻²)	(mV)	(H ₂ SO ₄)	
MoS ₂ /RGO	0.285	10	~150	0.5 M	39
MoS ₂ /TCNQ/Ccloth	3.41	10	>100	0.5 M	18
MoS ₂ ⊥RGO	0.204	10	172	0.5 M	20
1T- MoS ₂	0.216	10	550	0.5 M	21
MoS ₂ -NCNFs	0.855	10	120	0.5 M	22
MoS ₂ /CC	0.19	10	>100	0.5 M	19
MoS ₂ QDs	0.036	10	>200	0.5 M	24
Cu-MoS ₂ /RGO	0.285	10	244	0.5 M	30
MoS ₂ QDs/RGO	0.285	10	64	0.5 M	This work

References

1. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu and J. M. Tour, *ACS Nano*, 2010, **4**, 4806-4814.