Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

ELECTRONIC SUPPLEMENTARY INFORMATION

Sol-gel copper chromium delafossite thin films as stable oxide photocathodes for water splitting

Ana Korina Díaz-García, Teresa Lana-Villarreal, Roberto Gómez*

Institut Universitari d'Electroquímica i Departament de Química Física, Universitat d'Alacant, Apartat 99, E-03080 Alicante, Spain

E-mail: Roberto.Gomez@ua.es

1. Experimental details

2. UV-vis absorbance spectrum for an FTO/CuCrO₂ electrode

3. Additional SEM image for an FTO/CuCrO₂ electrode

 Linear scan voltammograms under transient illumination and photocurrent transients under 1 sun in 0.1 M HClO₄.

5. Linear scan voltammograms under transient illumination in 0.1 M NaOH.

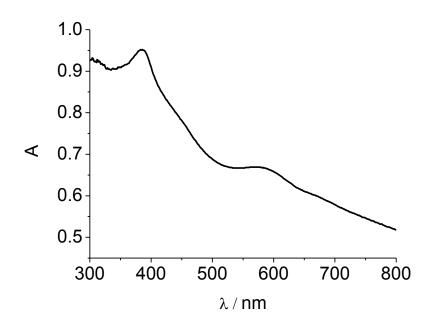
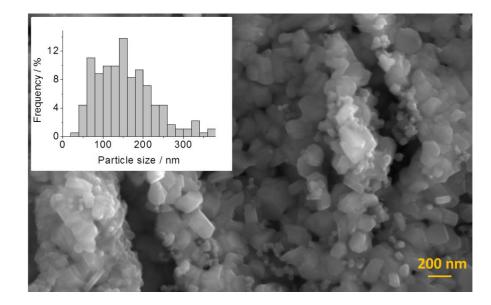
6. Long-term chronoamperometric experiments under transient illumination in 0.1 M ${\rm HClO_4}$ and 0.1 M NaOH.

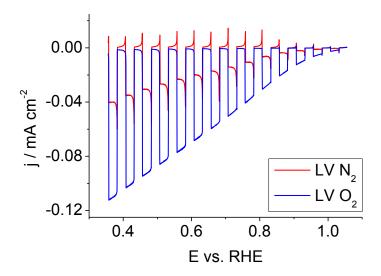
1. Experimental details

CuCrO₂ thin films were prepared on commercial fluorine-doped tin oxide (FTO) glass substrates by a sol-gel method. According to the literature [32], Cu(CH₃COO)₂·H₂O (0.002 mol, purity 99.99%+, Aldrich Chem. Co.) and Cr(NO₃)₃·9H₂O (0.002 mol, purity 99%, Aldrich Chem. Co.) were dissolved in 8 mL of ethanol, and triethanolamine (0.004 mol, purity 98%, Aldrich Chem. Co.) was added to the solution. This precursor solution was stable indefinitely. It was spin-coated on FTO at 1500 rpm for 15 s. The resulting samples were annealed at 400 °C in air for 1 h with a heating rate of 5 °C/min. Such a deposition procedure was repeated four times. Finally, the samples were post-annealed at 650 °C in an N₂ atmosphere for 2 h (with a heating rate of 5 °C/min).

A Bruker D8-Advance X-ray diffractometer operating with Cu-K α radiation (λ =0.154nm) at 40 kV and 40 mA was used to determine the X-ray diffraction pattern. The grazing incidence operating mode was used with an incidence angle of 0.25° and a sampled step size of 0.013° within $2\theta = 10^{\circ} - 70^{\circ}$. The surface morphology of the films was analyzed using a JEOL JEM-1400 field emission scanning electron microscope (FE-SEM). Photoelectrochemical measurements were performed at room temperature using a three-electrode cell with a fused silica window and a computer-controlled Autolab PGSTAT30 potentiostat. In all the cases, an Ag/AgCl/KCl(sat) electrode and a Pt wire were employed as a reference and as a counter electrode, respectively. Potentials are referred either to the Ag/AgCl/KCl(sat) electrode or to the RHE. Three different working electrolytes were used: 0.1 M HClO₄ solution, 0.1 M acetate/acetic acid buffer solution (pH=4.6) and 0.1 M NaOH, all of them prepared with ultrapure water and purged with either N_2 or O_2 before the measurements. Cyclic voltammograms were obtained in the dark at a scan rate of 20 mV·s⁻¹. An ozone-free 300 W Xe arc lamp (Thermo Oriel) was employed for electrode illumination (equipped with a water filter). The electrode was illuminated from the electrolyte side (EE illumination). The light intensity was measured by coupling an optical power meter (Thorlabs model PM100D) with a thermopile. The typical value of the light intensity on the sample was 0.65 W·cm⁻². Illumination was also performed with a solar simulator (Abett, 550 W) at 1 sun (AM 1.5).

2. UV-vis absorbance spectrum for an FTO/CuCrO₂ electrode


Figure S1. UV-visible absorption spectrum for a CuCrO₂ film supported on conducting glass.

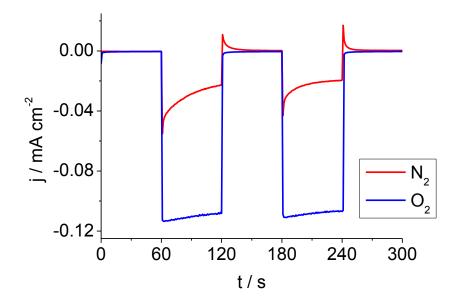

3. Additional SEM image for an FTO/CuCrO₂ electrode

Figure S2. SEM image for a CuCrO₂ thin film with a defective region.

4. Linear scan voltammograms under transient illumination and photocurrent transients under 1 sun in 0.1 M HClO₄.

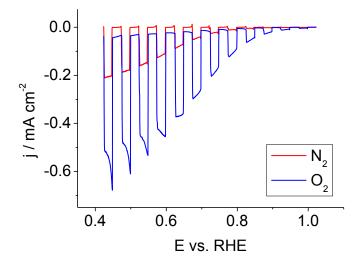
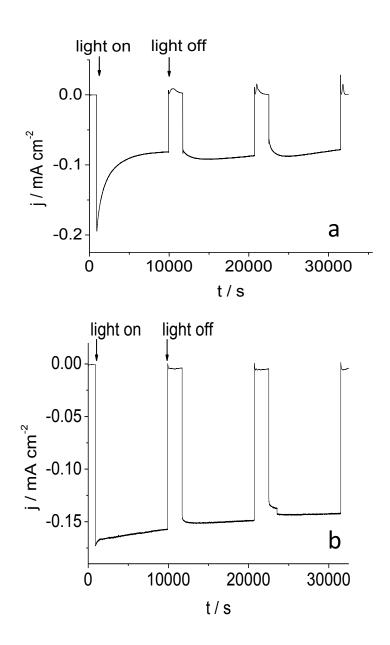


Figure S3. Linear scan voltammograms for a $CuCrO_2$ electrode in 0.1 M HClO₄ purged with either N₂ or O₂ under 1 sun illumination. Scan rate: 5 mV·s⁻¹.


Figure S4. Photocurrent transients under 1 sun illumination for an $FTO/CuCrO_2$ electrode in contact with a 0.1 M HClO₄ purged with either N₂ or O₂.

5. Linear scan voltammograms under transient illumination in 0.1 M NaOH

Figure S5. Linear scan voltammograms for a CuCrO₂ electrode in 0.1 M NaOH purged with either N₂ or O₂ under transient illumination from an ozone-free Xe arc lamp (0.65 W·cm⁻²). Scan rate: 5 mV·s⁻¹.

6. Long-term chronoamperometric experiments under transient illumination in 0.1 M HClO $_4$ and 0.1 M NaOH.

Figure S6. Long-term chronoamperometric experiments under transient illumination for $FTO/CuCrO_2$ electrodes in contact with either (a) N₂-purged 0.1 M HClO₄ or (b) N₂-purged 0.1 M NaOH solutions.