Supporting Information

$\mathrm{H}_{\mathrm{x}} \mathrm{MoO}_{3-\mathrm{y}}$ nanobelts for high-performance pseudocapacitors with sea water as electrolyte and desalination device

Liang Huang $\ddagger^{\text {a }}$, Xiang Gao $\ddagger^{\text {a }}$, Qiang Dong $\ddagger^{\text {b }}$, Zhimi Hu ${ }^{\text {a }}, \mathrm{Xu}$ Xiao ${ }^{\text {a }}$, Tianqi Li ${ }^{\text {a }}$, Yongliang Cheng ${ }^{\text {a }}$, Bin $_{\text {Yao }}{ }^{\text {a }}$, Jun Wan ${ }^{\text {a }}$, Dong Ding ${ }^{\text {c }}$, Zheng Ling ${ }^{\text {b }}$, Jieshan Qiu ${ }^{\text {b }}$ and Jun Zhou ${ }^{\text {** }}$

Fig. S1. (a) XPS of MoO_{3} and $\mathrm{S}-\mathrm{H}_{\mathrm{x}} \mathrm{MoO}_{3-\mathrm{y}}$; high resolution XPS spectra of S$\mathrm{H}_{\mathrm{x}} \mathrm{MoO}_{3-\mathrm{y}}$ and fitting curves, (b) $\mathrm{Mo}^{4+}, \mathrm{Mo}^{6+}$ and (c) Sn^{4+}.

Fig. S2. (a) The hybrid film of $1 \mathrm{~S}-\mathrm{H}_{\mathrm{x}} \mathrm{MoO}_{3-\mathrm{y}}$ and CNT ; (b) The thickness of this hybrid film; optical image of pristine MoO_{3} (c) and $1 \mathrm{~S}-\mathrm{H}_{\mathrm{x}} \mathrm{MoO}_{3 \text {-y }}$ film (d).

Fig. S3. CV curves (a) and CDG (b) specific capacitance of $1 \mathrm{~S}-\mathrm{H}_{\mathrm{x}} \mathrm{MoO}_{3-\mathrm{y}}$ in the 5 M LiCl solution; (c) specific capacitance of $\mathrm{S}-\mathrm{H}_{\mathrm{x}} \mathrm{MoO}_{3 \text {-y }}$ under different reaction time and MoO_{3}.

Fig. S4. CV curves of $1 \mathrm{~S}-\mathrm{H}_{\mathrm{x}} \mathrm{MoO}_{3-\mathrm{y}}$ in the solution of (a) KCl , (b) MgSO_{4} and (c) NaCl .

Fig. S5. (a) volumetric capacitance and (b) specific capacitance of $1 \mathrm{~S}-\mathrm{H}_{\mathrm{x}} \mathrm{MoO}_{3 \text {-y }}$ in the different cations solution under current density from $1 \mathrm{~A} / \mathrm{g}$ to $50 \mathrm{~A} / \mathrm{g}$.

Fig. S6. (a) CV and (b) CDG curves of pristine MoO_{3} in the 5 M LiCl solution.

Fig. S7. (a) CV curves of symmetric device based on $1 \mathrm{~S}-\mathrm{H}_{\mathrm{x}} \mathrm{MoO}_{3 \text {-y }}$ electrode and (b) Ragone plots compared with the selected previous device.

Fig. S8. (a) The electrosorption-desorption performance of $1 \mathrm{~S}-\mathrm{H}_{\mathrm{x}} \mathrm{MoO}_{3-\mathrm{y}}$ and CNT hybrid film in NaCl solution by varying the cell voltage from 0.4 to 1.2 V ; (b) current response and electrosorptive capacity of CNT at the voltage of 1.2 V .

Reference

1 M. R. Lukatskaya, O. Mashtalir, C. Ren, Y. D. Agnese, P. Rozier, P. L.Taberna, M. Naguib, P. Simon, M. W. Barsoum, Y. Gogotsi, Science, 2013, 341, 1502.
2 D. Yu, K. Goh, H. Wang, L. Wei, W. Jiang, Q. Zhang, L. Dai, Y. Chen, Nat. Nanotech. 2014, 9, 555-562.
3 L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao, K. Gopalsamy, H. Sun, C. Gao, Nat. Comтип. 2014, 5, 3754.

