Electronic Supplementary Information

Solution-Deposited Pure Selenide CIGSe Solar Cells from Elemental Cu, In, Ga, and Se⁺

Dandan Zhao,^{a, b} Qingwen Tian,^{a, b} Zhengji Zhou,^{*a, b} Gang Wang,^c Yuena Meng,^{a, b} Dongxing Kou,^{a, b} Wenhui Zhou,^{a, b} Daocheng Pan,^{*c} and Sixin Wu^{*a, b}

^aThe Key Laboratory for Special Functional Materials of MOE, Henan University, Kaifeng, 475004, China. E-mail: zzj@henu.edu.cn. and wusixin@henu.edu.cn.

^bCollaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, Henan Province, China

^cState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China. Email: pan@ciac.ac.cn.

Solvent	Boiling point	Melting point	Vapor pressure	Surface tension
	(°C)	(°C)	(kPa)	(mN/m)
Hydrazine	113.5	1.4	1.92	66.67
1,2-ethylenediamine	117.26	11.3	1.43	40.77

Table S1. Data of hydrazine and 1,2-ethylenediamine.

Fig. S1 Photographs of (a) elemental Cu solution; (b) elemental In solution; (c) elemental Ga solution; (d) elemental Ga and Se solution; (e) elemental Cu, In, Ga and Se solution.

Fig. S2 Schematic diagram of the solution preparation and film deposition process of the CIGSe absorber

	Cu	In	Ga	Se
As-prepared film	13.9	12.6	5.2	25.2
Selenized film	14.98	13.87	5.6	52.4

Fig. S3 EDS spectra of the fine-grained bottom layer.

	РСЕ (%)	V _{oc} (mV)	Jsc (mA/cm²)	FF (%)
1	9.50	528	26.64	67.48
2	9.00	531	25.01	67.94
3	8.70	524	24.58	67.72
4	8.67	524	24.69	66.96
5	8.66	521	24.60	67.55
6	8.40	521	25.07	64.55
8	8.30	523	25.10	63.74
9	7.94	520	24.77	61.63
average	8.65	524	25.06	65.95

Table S3. Detail photovoltaic parameters for 9 solar cell devices.

Experimental Section

Formation of CIGSe Precursor Solution: First, Cu (0.0699 g, 1.10 mmol), In (0.0960 g, 0.83 mmol), Ga (0.0250 g, 0.35 mmol), Se (0.18125 g, 2.29 mmol), 5 mL of 1,2-ethylenediamine and 0.5 mL of 1,2-ethanedithiol were mixed added into a argon filled round bottom flask. Then the solution was stirred at 60 °C for several hours until all substance dissolved. The solution stays stable for weeks in a closed environment.

Fabrication CIGSe thin film and CIGSe device: First, 600 nm Mo forming the back contact of the device sputtered on a ($20 \times 20 \times 1.0 \text{ mm}^3$) soda-lime glass. Then the prepared CIGSe precursor was spin-coated at 3000 rmp for 30 s onto the molybdenum-coated glass. The film was then immediately dried at 350 °C on a preheated hot plate for 1 min. Then repeated the spin-coating/sintering step for several times until the thickness of the film reached $1\sim2 \mu$ m. The CIGSe absorber film was deposited in an argon-filled glove-box with water and oxygen levels maintained below 1 ppm. Next, the as-deposed CIGSe thin film was selenized in a graphite box containing 0.3 g of Se at 550 °C for 20 min in the tubular furnace. And next 70 nm CdS layer was deposited using a chemical bath approach for 12 min. Followed about 50 nm ZnO and 280 nm ITO were sputtered onto the glass/Mo/CIGSe/CdS device. Finally, on the top of the device about $1\sim2 \mu$ m Al grid electrode was made though thermal evaporation. At last the conventional glass/Mo/CIGSe/CdS/ZnO/ITO/Al device was completed. The CIGSe device was made without antireflection layer. Each device, with an active area of 0.19 cm², was separated from neighboring devices by mechanical scribing.

Characterization: Thermogravimetric analysis (TGA) scans were performed using the TG/DTA 6200 thermogravimetric analyzer, SII, Inc, in the nitrogen atmosphere up to 800 °C. X-ray data were collected using a Philips X' PertPro with Cu Kα radiation. And SEM of the samples' were taken by using field emission scanning electron microscope of JSM-5600LV at 20 KV. The composition of film was characterized by scanning electronic microscope (SEM) equipped with an Energy Dispersive X-Ray Spectroscopy (EDX, Nano SEM 45050/EDX). J-V curve was measurement using a Keithley 2400 source meter under the standard AM1.5 illumination (100 mW·cm⁻²). The external quantum efficiency (EQE) spectrum was measured by a Zolix SCS100QE system.