## **Supporting Information**

## Amino-functionalized Ordered Mesoporous Carbon for the Separation of Toxic Microcystin-LR

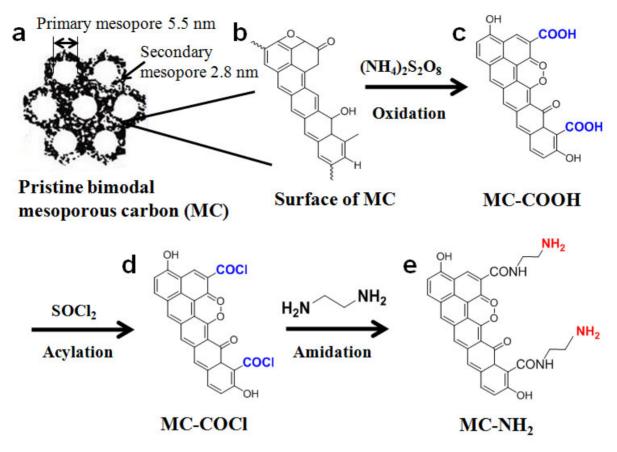
Wei Teng,<sup>ab</sup> Zhangxiong Wu,<sup>c</sup> Jianwei Fan,<sup>a</sup> Wei-xian Zhang<sup>\*a</sup> and Dongyuan Zhao<sup>\*b</sup>

<sup>a</sup> College of Environmental Science and Engineering, State Key Laboratory for Pollution Control, Tongji University, Shanghai, China 200092

<sup>b</sup> Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and Advanced Materials Laboratory, Fudan University, Shanghai, China 200433

<sup>c</sup> College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou City, Jiangsu, China 215123

## EXPERIMENTAL


## **Adsorption Calculation and Modeling**

The adsorbed percentage (*P*) of MC-LR at time (*t*) is calculated with the equation (1), where  $C_0$  and  $C_t$  are the initial solution concentration and the concentration at time *t* (mg/L), respectively. The adsorbed amount of MC-LR is calculated by using the equation (2), where  $Q_e$  is the equilibrium adsorption capacity (mg/g),  $C_e$  is the concentration at equilibrium point (mg/L), *W* is the weight of the dry sorbents (g), and *V* is the volume of the solution (L). The adsorption isotherms were obtained by plotting  $Q_e vs C_e$ , and then fitted by Langmuir model equation (3), where  $Q_{max}$  is the saturated adsorption capacity (mg/g) and  $K_L$  represents the Langmuir equilibrium constant (L/g).

$$P = \frac{(C_0 - C_t)}{C_0} \times 100\%$$
 (1)

$$Q_e = \frac{(C_0 - C_e) \times V}{W}$$
(2)

$$Q_e = \frac{Q_{\max} K_L C_e}{1 + K_L C_e} \tag{3}$$



**Scheme S1.** Process flow of amino-functionalized mesoporous carbon formation. (a) The frameworks and (b) surface chemistry of the pristine bimodal mesoporous carbon MC, (c) carboxylic groups generated on the MC surface, (d) acyl-chloride groups generated on the MC surface, and (e) amino groups generated on the MC surface.

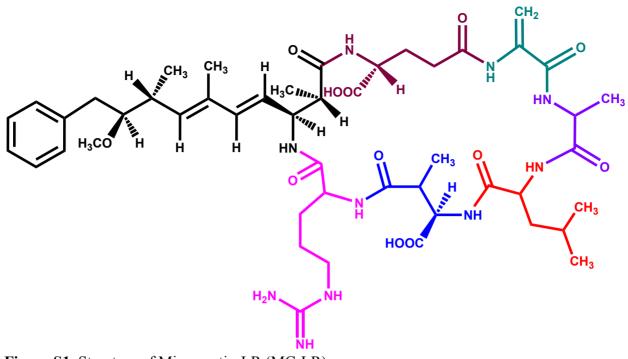
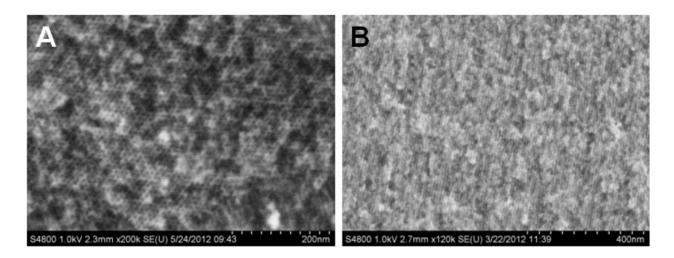
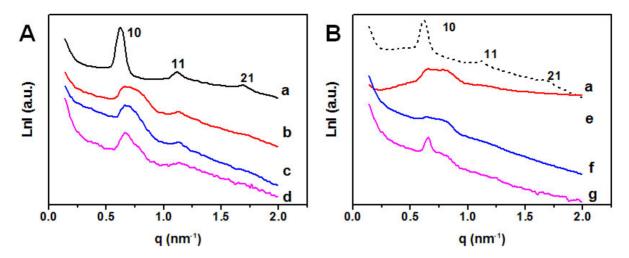





Figure S1. Structure of Microcystin-LR (MC-LR).



**Figure S2.** SEM images of pristine ordered mesoporous carbon MC (A) and amino functionalized MC- $NH_2$  mesoporous carbon (B).



**Figure S3.** SAXS patterns of pristine and different functionalized ordered mesoporous carbon samples after treatment of oxidation, acylation and amidation. (A) MC (a), MC-COOH-1 (b), MC-COCl-1 (c), MC-NH<sub>2</sub>-1-a (d), (B) MC-COOH-2 (e), MC-NH<sub>2</sub>-2-b (f), MC-NH<sub>2</sub>-1-b (g), where 1 and 2 stand for the oxidation time of 4 and 16 h, and a, b for the added amount of the EDA with 4 and 8  $\mu$ L, respectively.

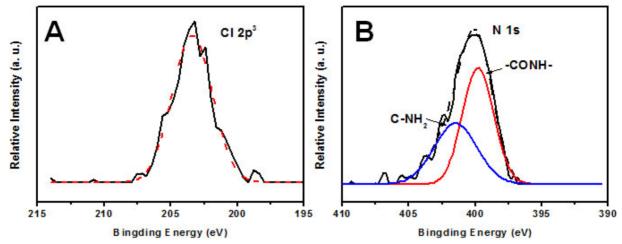
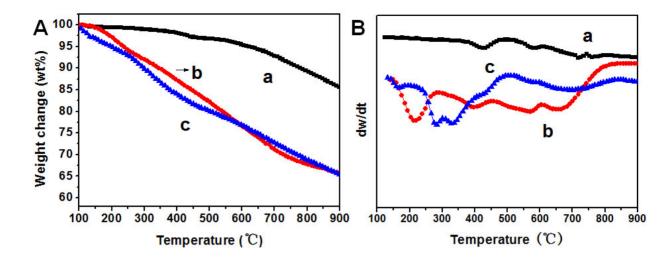
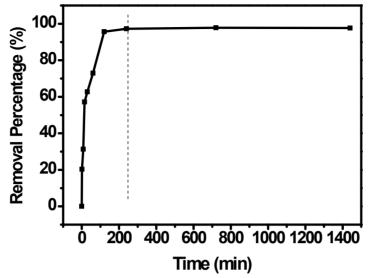
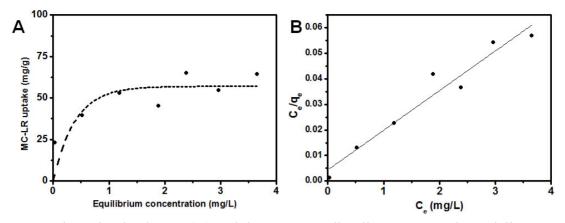





Figure S4. XPS Cl 2p3 spectra of MC-COCl (A) and N 1s spectra of amino functionalized MC-


NH<sub>2</sub> mesoporous carbon.



**Figure S5.** TG curves (A) of pristine mesoporous carbon MC (a), MC-COOH sample treated with surface oxidation (b), MC-COCl sample further treated with thionyl chloride and MC-NH<sub>2</sub> sample last treated by amidation (c). DTG curves (B), the first differential results corresponding to TG data.



**Figure S6.** Time-dependent adsorption curve of MC-LR on pristine mesoporous carbon MC with an initial concentration of 2 mg/L.



**Figure S7.** Adsorption isotherms (A) and the corresponding linear Langmuir modeling curves (B) of the powder activated carbon towards MC-LR.

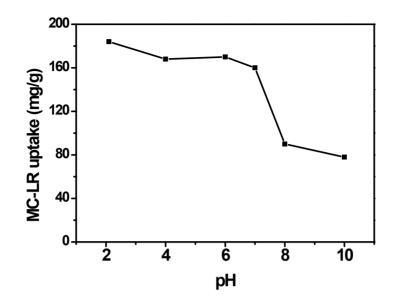



Figure S8. MC-LR uptake versus pH on amino modified MC-NH<sub>2</sub>-1-a sorbent.

| Sample                          | N (%)      | C (%) | H (%) | O (%) | Grafted amounts (mmol/g) |
|---------------------------------|------------|-------|-------|-------|--------------------------|
| MC                              | 0.21       | 92.04 | 0.57  | 7.69  |                          |
| MC-COOH-1                       | 0.17       | 62.92 | 3.28  | 33.63 | 2.51 <sup>a</sup>        |
| MC-COOH-2                       | 0.22       | 60.88 | 2.98  | 35.92 |                          |
| MC-NH <sub>2</sub> -1-a         | 7.65       | 65.36 | 4.54  | 22.45 | 2.73                     |
| MC-NH <sub>2</sub> -2-b         | 10.96      | 58.58 | 4.46  | 26.00 | 3.84                     |
| MC-NH <sub>2</sub> -1-b         | 9.80       | 62.36 | 4.34  | 23.50 | 3.43                     |
| <sup>a</sup> Calculated from th | ne TG data |       |       |       |                          |

**Table S1.** Element analysis results of pristine mesoporous carbon MC and various functionalized

 mesoporous carbon materials, and the estimated densities of the functional groups.

| Sorbents                | $Q_m (mg/g)$ | $K_{L}$ (L/g) | R <sup>2</sup> |
|-------------------------|--------------|---------------|----------------|
| MC                      | 523          | 0.22          | 0.948          |
| MC-NH <sub>2</sub> -1-a | 580          | 0.27          | 0.947          |
| PAC                     | 64.5         | 2.67          | 0.9773         |

**Table S2.** Langmuir isotherm constants of MC-LR adsorption on different carbon sorbents.