Electronic Supplementary Information

A bi-functional metal-free catalyst composed of dualdoped graphene and mesoporous carbon for rechargeable lithium-oxygen batteries

Jae-Hong Kim,^{a,#} Aravindaraj G. Kannan,^{a,#} Hyun-Sik Woo,^a Dae-Gun Jin,^b Wonkeun Kim,^b Kyounghan Ryu,^b and Dong-Won Kim^{*a}

^aDepartment of Chemical Engineering, Hanyang University, Seoul 133-791, Republic of Korea

^bAutomotive Research and Development Division, Hyundai Motor Group, Gyeonggi-do 437-

815, Republic of Korea

*E-mail: dongwonkim@hanyang.ac.kr

^[#]J.-H.Kim and A.G.Kannan contributed equally to this work.

Fig. S1. SEM images of GC showing a similar morphology to that of NSGC. Hence, the effect of morphology on electrocatalytic performance could be eliminated.

Fig. S2. (a) Nitrogen adsorption/desorption isotherm, and (b) pore size distribution of GC. GC sample shows BET surface area of 1658 m² g⁻¹, which is similar to the NSGC sample and thus the effect of porous architecture on their electrochemical performance could be eliminated.