Supporting information

for

Single-crystalline Ni(OH)₂ nanosheets vertically aligned on threedimensional nanoporous metal for high-performance asymmetric supercapacitors

Chao Hou, Xing-You Lang*, Zi Wen, Yong-Fu Zhu, Ming Zhao, Jian-Chen Li, Wei-

Tao Zheng, Jian-She Lian, Qing Jiang*

Key Laboratory of Automobile Materials (Jilin University), Ministry of Education,

and School of Materials Science and Engineering, Jilin University, Changchun

130022, China

* Correspondence and requests for materials should be addressed to X.Y.L. (email: xylang@jlu.edu.cn) or Q.J. (email: jiangq@jlu.edu.cn).

Figure S1. SEM images of (a) top view and (b) cross-sectional view of NP Au.

Figure S2. (a) XRD pattern (b) SEM and (c) HRTEM image of NP Au/RA Ni(OH)₂ electrode fabricated without the addition of $K_2S_2O_8$ in the aqueous solution.

Figure S3. Typical XPS survey spectrum for the NP Au/VA Ni(OH)₂ electrode.

Figure S4. EDS spectrum of NP Au/VA Ni(OH)₂ electrode. The content Cu was from supported Cu foil.

Figure S5. Typical CV curves of (a) NP Au/RA Ni(OH)₂, (b) CFP/VA Ni(OH)₂ and (c) CFP/RA Ni(OH)₂ electrodes at various scan rates.

Figure S6. The potential difference between the anodic peaks and the cathode peaks $(\Delta E_p = E_O - E_R)$ for NP Au/VA Ni(OH)₂, NP Au/RA Ni(OH)₂ and CFP/VA Ni(OH)₂ electrodes as a function of scan rate.

Figure S7. Comparison of CV curves for NP Au/VA Ni(OH)₂ with different loading of Ni(OH)₂, which is controlled by using different concentration of precursor NiCl₂. The scan rate is 20 mV s⁻¹.

Figure S8. Volumetric capacitance of NP Au/VA Ni(OH)₂ electrode as a function of volumetric current density.

Figure S9. Complex plane plot of the impedances of NP Au/VA $Ni(OH)_2$, NP Au/RA $Ni(OH)_2$ and CFP/VA $Ni(OH)_2$ electrodes, with a magnification for the high frequency region in the inset.

Figure S10. Specific capacitance of constituent VA Ni(OH)₂ on NP Au, in comparison with RA Ni(OH)₂ on NP Au, RA Ni(OH)₂ on CFP and other previously reported Ni(OH)₂-based electrodes, such as graphite/amorphous Ni(OH)₂,²³ Ni foil/3D Ni(OH)₂,²⁵ graphene/Ni(OH)₂,³⁸ Au nanoparticles-deposited Ni(OH)₂,⁵⁴ 3D graphite foam/Ni(OH)₂,⁵⁸ Ni foam/CoO/Ni(OH)₂,⁶² and 3D graphene/Ni₃S₂/Ni(OH)₂ electrodes.⁶³

Figure S11. Electrochemical performance of AC electrode. (a) CV curves, (b) charge/discharge profiles and (c) specific capacitance of the AC electrode derived from discharge curves.

Figure S12. CV curves of ASC device at various potential windows at 20 mV s⁻¹.

Figure S13. Charge-discharge curves of ASC device at a current density of 25.0 A g⁻¹.

Figure S14. SEM image of NP Au/VA $Ni(OH)_2$ after the stability test of 10000 cycles.