Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Fig. S1 The HRTEM image of Si@u-SiO_x-NH₂ obtained by one-step method for 24h.

CV curves of (a) Si@t-SiO_x@GNSs and (b) Si/GNSs as anode material for LIBs; chargedischarge plots of (c) Si@t-SiO_x@GNSs and (d) Si/GNSs.

Fig. S2a and S2b show the first three cyclic voltammetry (CV) curves of Si(a)t-SiO_x(a)GNSs and Si/GNSs. The reduction current in the first cycle above ~0.3V is larger than that of the following two cycles. The additional current could be assigned to the electrolyte being irreversibly reduced to form SEI. The additional current can also be seen from the CV curves of Si@u-SiO_x@ GNSs. However, other peaks are so strong that obscure this broad reduction peak. The phenomenon that the peak around 0.21V does not exist in the first cycle but gradually evolves in the subsequent cycles also occurs in the CV curves of $Si@t-SiO_x@$ GNSs and Si/GNSs, and this reduction peak of Si@u-SiOx@ GNSs in the second cycle is stronger than those of Si@t-SiOx@ GNSs and Si/GNSs. This also indicates that the Li extraction kinetics of former is better than those of latter two. Other reduction and oxidation peaks from CV curves of Si@t-SiO_x@ GNSs and Si/GNSs are consistent with those of Si@u- $SiO_x(a)$ GNSs. The cathodic part of the second cycle shows two peaks: at 0.05V and 0.21V, corresponding to the formation of Li-Si alloy phases. The anodic part displays two peaks, at 0.31V and 0.5V, corresponding to the de-alloying of the Li-Si alloys, consistenting with previous reports^{1,2}. The detailed charge-discharge plots of Si(a)t-SiO_x(a) GNSs is given in Fig. S2c. The lithiation is not complete at the first cycle so that the second charge capacity increases by 313.8mAh g⁻¹. This indicates that the thick silica shell in Si@t-SiO_x@ GNSs limits the lithiation. From the detailed charge-discharge process of Si/GNSs (Fig. S2d), we can see that the cycle performance of Si/GNSs is poor which can be attributed to that unmodified Si nanoparticles cannot be well encapsulated by GNSs.

Fig. S3 Cycling performance of GNSs and calculated capacity retention of the $Si@u-SiO_x$ and $Si@t-SiO_x$ alone.

GNSs were obtained by direct thermal reduction of graphene oxide at 750 °C for 2 h. Then, GNSs were used as anode material for LIBs.

Fig. S4 Cycling performance comparison of Si nanoparticles and Si@u-SiO_x@GNSs with PVDF and SA binders.

Fig. S3 shows the cycling performance comparison of Si nanoparticles and Si@GNSs with PVDF and sodium alginate (SA) binders. SA has been reported to markedly improve the electrochemical performance of silicon anodes³⁻⁵ and the improvement can be seen clearly from Fig. S3. However, the cycle performance shown by Si@u-SiO_x@GNSs with SA binder is similar to that with PVDF binder. The good cycling capability with both SA and PVDF binders indicates the structure of Si@u-SiO_x@GNSs we prepared is superior.

Precursors for self-assembly	1st discharge/ charge	Cycling	Rate capability	Binder	Reference
and posttreatment	capacity and	performance			
	Initial CE ^a				
Si@ultrathin SiO _x -NH ₂ (+) and	2933/2391 mAh g ⁻¹	1844 mAh \cdot g ⁻¹	1673, 1297, 929 mAh·g ⁻¹	PVDF	This work
GO (-)	81.5%	after 50 cycles at	at 500,1000, 2000 mA \cdot g ⁻¹		
Thermal reduction		$200~mA{\cdot}g^{-1}$	700 mA \cdot g ⁻¹ after 350 cycles		
$Si@SiO_x\text{-}PDDA^b(+)$ and GO (-)	2920/1720 mAh g ⁻¹	$1205 \text{ mAh} \cdot \text{g}^{-1}$	1452, 1320, 990 mAh·g ⁻¹	PVDF	1
Thermal reduction and HF etching	58.9%	after 150 cycles	at 400,800, 1600 mA·g ⁻¹		
		at 100 mA \cdot g ⁻¹			
$Si@SiO_x$ (-) and GO/DODA (+)	3559/1686 mAh g ⁻¹	1118 mAh \cdot g ⁻¹	1139, 925, 664, 491 mAh g ⁻¹	NO	2
chemical reduction by N_2H_4	47.4%	after 50 cycles at	at 100, 200, 500, 1000 mA g ⁻¹		
		$50 \text{ mA} \cdot \text{g}^{-1}$			
$Si^{c}@SiO_{x}\text{-}APTES\ (+)$ and GO (-)	2142/1649 mAh g ⁻¹	1335 mAh·g ⁻¹	1090, 701, 441 mAh·g ⁻¹	PVDF	6
Thermal reduction and HF etching	80%	after 80 cycles at	at 500,1000, 5000 mA $\cdot g^{-1}$		
		$200\ mA{\cdot}g^{-1}$			
$Si@SiO_x(-)$ and N-doped	\sim 5500/2500 mAh g ⁻¹	${\sim}1000~mAh{\cdot}g^{-1}$	${\sim}800$ and 300 mAh ${\cdot}g^{-1}$	PAA ^d	7
graphene (+)	47%	after 100 cycles	at 1.2 and 12.1 $A \cdot g^{-1}$		
		at 210 mA \cdot g ⁻¹			
Si-COOH (-) and G-PIL ^e (+)	$\sim 1250/900 \text{ mAh g}^{-1}$	987 mAh \cdot g ⁻¹	1100, 870, 735 at 400, 800,	$\mathrm{CMC}^{\mathrm{f}}$	8
Thermal reduction	~72%	after 50 cycles,	$1600 \text{ mA} \cdot \text{g}^{-1}$		
		803 mAh \cdot g ⁻¹			
		after 100 cycles			
		at 200 mA \cdot g ⁻¹			
PANI-Sig (+) and GO(-)	$\sim 2200/1600 \text{ mAh g}^{-1}$	1400 mAh \cdot g ⁻¹	900 mAh \cdot g ⁻¹ at 2A g ⁻¹	PVDF	9
Thermal reduction	73.2%	after 50 cycles at	after 300 cycles		
		$100 \text{ mA} \cdot \text{g}^{-1}$			

Table S1. Summary of the fabrications and electrochemical performance of Si/GNSs and	ode
materials for LIBs through electrostatic self-assembly method in recent years.	

^aCE: Coulombic efficiency. ^bPDDA: poly(diallydimethylammonium chloride). ^cSi: Si nanowires.

^dPAA: poly (acrylic acid) binder which can considerable improve the electrochemical performance of Si nanoparticles.

^eG-PIL: graphene-modified protic ionic liquid.

^fCMC: carboxymethylcellulose binder which can also improve the electrochemical performance of Si nanoparticles.

^gPANI-Si: polyaniline grafted Si nanoparticles.

References:

- 1 X. Zhou, Y. X. Yin, L. J. Wan and Y. G. Guo, *Advanced Energy Materials*, 2012, **2**, 1086.
- 2 H. Tang, J.-P. Tu, X.-Y. Liu, Y.-J. Zhang, S. Huang, W.-Z. Li, X.-L. Wang and C.-D. Gu, *J. Mater. Chem. A*, 2014, **2**, 5834.
- 3 Y. Wen, Y. Zhu, A. Langrock, A. Manivannan, S. H. Ehrman and C. Wang, *Small*, 2013, **9**, 2810.
- 4 C. Sun, Y. Deng, L. Wan, X. Qin and G. Chen, *ACS Appl. Mater. Interfaces*, 2014, **6**, 11277.
- 5 I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov and G. Yushin, *Science*, 2011, **334**, 75.
- 6 Y. Zhu, W. Liu, X. Zhang, J. He, J. Chen, Y. Wang and T. Cao, *Langmuir*, 2013, **29**, 744.
- 7 W Lee, T Hwang, J Hwang, H Kim, J Lim, H Jeong, J Shim, T Han, J Kim, J Choi and S Kim. *Energy Environ. Sci.*, 2014, **7**, 621.
- 8 Y.-S. Ye, X.-L. Xie, J. Rick, F.-C. Chang and B.-J. Hwang, J. Power Sources, 2014, 247, 991.
- 9 Z.-F. Li, H. Zhang, Q. Liu, Y. Liu, L. Stanciu and J. Xie, ACS Appl. Mater. Interfaces, 2014, 6, 5996.