Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Natural Carbon Nanodots Assisted Development of Size-Tunable Metal (Pd, Ag)

Nanoparticles Grafted on Bionic Dendritic α-Fe₂O₃ for Cooperative Catalytic Applications

Zhifeng Jiang,^a Deli Jiang,^a Wei Wei^b, Zaoxue Yan^a, and Jimin Xie*^a

^aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R.

China

^bAnalysis and Test Center, Jiangsu University, Zhenjiang, 212013, P. R. China

First Author e-mail address: <u>ntjiangzf@sina.com</u>

*Corresponding author: Jimin Xie

Tel.: +86 11 88791708; fax: +86 11 88791800;

E-mail address: xiejm391@sohu.com

Supporting Information

Fig. S1 (A) Pure Pd nanoparticles, (B) pure Ag nanoparticles.

Fig. S2 Size distribution of Pd nanoparticles.

Fig. S3 Size distribution of Ag nanoparticles.

Fig. S4 FTIR (A) and Raman (B) spectra of dendritic α -Fe₂O₃, 12%Pd@Fe₂O₃ and 12%Ag @Fe₂O₃.

Fig. S5 UV-vis diffuse reflectance spectra (A) and band gaps (B) of the M@Fe₂O₃ (M=Pd, Ag) composites as well as dendritic α -Fe₂O₃.

Table S1

Catalyst	Catalyst dose	PNP	Rate	Ref.
Fe_3O_4 (a SiO ₂ -Ag,	1g (0.1 wt%)	0.12 mM	7.67 s ⁻¹ g ⁻¹	1
1g (0.1 wt%)				
Ag@halloysite nanotubes,	6*10 ⁻⁶ M, 20 mL	6*10 ⁻⁵ M	0.087 s ⁻¹ g ⁻¹	2
6*10 ⁻⁶ M, 20 mL				
Ag@carbon sphere,	1 mg	5*10-5 M	1.69 s ⁻¹ g ⁻¹	3
1 mg				
Ag@hollow poly(N-	0.5 g	0.32 mg,	0.014 s ⁻¹ g ⁻¹	4
isopropylacrylamide) sohere,		50 g H ₂ O		
0.5 g				
Ni–Co–Pd–P	25 mg	0.05 mmol	0.316 s ⁻¹ g ⁻¹	5
Ag/Fe ₂ O ₃	2 mg	2.65*10 ⁻⁵ M	1.54 s ⁻¹ g ⁻¹	6
Fe ₃ O ₄ @SiO ₂ /Ag	3 mg	0.005 M	4.6 s ⁻¹ g ⁻¹	7
Fe@Au-ATPGO	1.4g/L, 250 mL	0.06 M	0.035 s ⁻¹ g ⁻¹	8
Ag/SBA-15	0.9 mg	$9.0 \times 10^{-2} \text{ mM}$	1.97 s ⁻¹ g ⁻¹	9

- (1) Y. Chi, Q. Yuan, Y. Li, J. Tu, L. Zhao, N. Li and X. Li, J. Colloid Interface Sci., 2012, 383, 96-102.
- (2) P. Liu and M. Zhao, Appl. Surf. Sci., 2009, 255, 3989-3993.
- (3) S. Tang, S. Vongehr and X. Meng, J. Phys. Chem. C, 2010, 114, 977-982
- (4) L. Xie, M. Chen and L. Wu, J.Polym. Sci., Part A: Polym. Chem., 2009, 47, 4919-4924.
- (5) P. Yang, A. Xua, J. Xia, J. He, H. Xing, X. Zhang, S. Wei and N. Wang, App. Catal. A, 2014, 470, 89–96
- (6) J. Chiou, B. Lai, K. Hsu and D. Chen, J. Hazard.Mater. 2013, 248-249, 394-400.
- (7) X. Du, J. He, J. Zhu, L. Sun and S. An, Appl. Surf. Sci., 2012, 258, 2717–2723.
- (8) V. Gupta, N. Atar, M. Yola, Z. Üstündağ and L. Uzun, Water Res., 2014, 48, 210–217.
- (9) B. Naik, S. Hazra, V. S. Prasad and N. N. Ghosh, Catal. Commun., 2011, 12, 1104–1108.