Journal of Materials Chemistry A

Supporting information:

<u>Correlation between scratch healing and rheological behavior for</u> <u>terpyridine complex based metallopolymers</u>

By Stefan Bode, Marcel Enke, Ranjita K. Bose, Felix H. Schacher, Santiago J. Garcia, Sybrand van der Zwaag, Martin D. Hager,* Ulrich S. Schubert*

Schemes	S2
Self-healing pictures	S3
NMR-spectra	S17
SEC-curves	S19
X-ray data	S20
Thermal properties	S23
Rheology results	S38
Summary of properties of the metallopolymers	S59
Synthesis of the metallopolymers	S60

Schemes:

Scheme S1: Schematic representation of the synthesis of the covalent crosslinked copolymers **CP1** and **CP2**.

Self-healing pictures:

Figure S1: Self-healing studies of the crosslinked copolymer **CP1**: a) Film without a scratch, b) scratch, c) no healing after 17 h at 100 °C, d) no healing after 35 h at 100 °C, e) no healing after 101 h at 150 °C, f) no healing after 115 h at 150 °C, g) no healing after 155 h at 150 °C and h) no healing after 201 h at 150 °C.

Figure S2: Self-healing studies of the crosslinked copolymer **CP2**: a) Film without a scratch, b) scratch, c) no healing after 20 h at 100 °C, d) no healing after 40 h at 100 °C, e) no healing after 60 h at 100 °C, f) no healing after 80 h at 100 °C, g) no healing after 150 h at 100 °C, h) no healing after 170 h at 150 °C and 190 h at 150 °C.

Figure S3: Polymer network crosslinked by the addition of zinc nitrate (**MP1**): a) Film without scratch, b) scratch, c) no healing after 80 h at 100 °C, d) no healing after 210 h at 100 °C, e) film without scratch, f) scratch, g) healing after 17 h at 150 °C, h) 2nd scratch, i) no healing after 20 h at 150 °C, j) no healing after 36 h at 150 °C, k) no healing after 59 h at 150 °C and l) no healing after 74 h at 150 °C.

Figure S4: Polymer network crosslinked by the addition of zinc acetate (**MP2**): a) Film without scratch, b) scratch, c) no healing after 80 h at 100 °C, d) no healing after 210 h at 100 °C, e) film without scratch, f) scratch, g) no healing after 17 h at 150 °C, h) no healing after 34 h at 150 °C, i) no healing after 54 h at 150 °C, j) no healing after 70 h at 150 °C, k) no healing after 93 h at 150 °C and l) no healing after 108 h at 150 °C.

Figure S5: Polymer network crosslinked by the addition of zinc chloride (**MP3**): a) Film without scratch, b) scratch, c) no healing after 22 h at 100 °C, d) no healing after 37 h at 100 °C, e) no healing after 53 h at 100 °C, f) no healing after 72 h at 100 °C, g) no healing after 92 h at 100 °C, h) no healing after 112 h at 100 °C, i) no healing after 17 h at 150 °C, j) no healing after 34 h at 150 °C, k) no healing after 51 h at 150 °C and l) no healing after 68 h at 150 °C.

Figure S6: Polymer network crosslinked by the addition of nickel nitrate (**MP4**): a) Film without scratch, b) scratch, c) no healing after 22 h at 100 °C, d) no healing after 37 h at 100 °C, e) no healing after 53 h at 100 °C, f) no healing after 72 h at 100 °C, g) no healing after 92 h at 100 °C, h) no healing after 112 h at 100 °C, i) no healing after 17 h at 150 °C, j) no healing after 34 h at 150 °C, k) no healing after 51 h at 150 °C and l) no healing after 68 h at 150 °C.

Figure S7: Polymer network crosslinked by the addition of nickel acetate (**MP5**): a) Film without scratch, b) scratch, c) no healing after 120 h at 100 °C, d) no healing after 250 h at 100 °C, e) film without scratch, f) scratch, g) partial healing after 17 h at 150 °C, h) partial healing after 54 h at 150 °C, i) 2nd scratch, j) no healing after 16 h at 150 °C, k) no healing after 39 h at 150 °C and l) no healing after 54 h at 150 °C.

Figure S8: Polymer network crosslinked by the addition of nickel chloride (**MP6**): a) Film without scratch, b) scratch, c) no healing after 22 h at 100 °C, d) no healing after 37 h at 100 °C, e) no healing after 53 h at 100 °C, f) no healing after 72 h at 100 °C, g) no healing after 92 h at 100 °C, h) no healing after 112 h at 100 °C, i) no healing after 17 h at 150 °C, j) no healing after 34 h at 150 °C, k) no healing after 51 h at 150 °C and l) no healing after 68 h at 150 °C.

Figure S9: Polymer network crosslinked by the addition of cobalt nitrate (**MP7**): a) Film without scratch, b) scratch, c) healing after 17 h at 150 °C, d) 2nd scrtach, e) healing after 20 h at 150 °C, f) 3rd scratch, g) healing after 16 h at 150 °C, h) 4th scratch, i) healing after 23 h at 120 °C, j) 5th scratch and k) healing after 20 h at 120 °C.

Figure S10: Polymer network crosslinked by the addition of cobalt acetate (**MP8**): a) Film without scratch, b) scratch, c) no healing after 120 h at 100 °C, d) no healing after 180 h at 100 °C, e) film without scratch, f) scratch, g) no healing after 17 h at 150 °C, h) no healing after 34 h at 150 °C, i) 2nd scratch, j) no healing after 20 h at 150 °C, k) no healing after 36 h at 150 °C and l) no healing after 74 h at 150 °C.

Figure S11: Polymer network crosslinked by the addition of cobalt chloride (**MP9**): a) Film without scratch, b) scratch, c) healing after 20 h at 100 °C, d) film without scratch, e) scratch, f) healing after 17 h at 90 °C, g) 2nd and 3rd scratch, h) partial healing after 16 h at 90 °C, i) partial healing after 96 h at 90 °C, j) film without scratch, k) scratch and l) partial healing after 60 h at 80 °C.

Figure S12: Polymer network crosslinked by the addition of manganese nitrate (**MP10**): a) Film without scratch, b) scratch, c) no healing after 22 h at 100 °C, d) no healing after 37 h at 100 °C, e) no healing after 53 h at 100 °C, f) no healing after 72 h at 100 °C, g) no healing after 92 h at 100 °C, h) no healing after 112 h at 100 °C, i) no healing after 17 h at 150 °C, j) no healing after 34 h at 150 °C, k) no healing after 51 h at 150 °C and l) no healing after 68 h at 150 °C.

Figure S13: Polymer network crosslinked by the addition of manganese acetate (**MP11**): a) Film without scratch, b) scratch, c) healing after 40 h at 100 °C, d) 2nd scratch, e) partial healing after 80 h at 100 °C, f) 3rd scratch, g) partial healing after 60 h at 100 °C, h) partial healing after 130 h at 100 °C, i) film without scratch, j) scratch, k) no healing after 17 h at 90 °C l) no healing after 97 h at 90 °C.

Figure S14: Polymer network crosslinked by the addition of manganese chloride (**MP12**): a) Film without scratch, b) scratch, c) healing after 17 min at 100 °C, d) film without scratch, e) scratch, f) healing after 15 min at 100 °C, g) film without scratch, h) scratch, i) healing after 13 min at 100 °C, j) film without scratch, k) scratch l) partial healing after 11 min at 100 °C.

NMR-spectra

Figure S15: ¹H NMR-spectrum of **2** in CDCl₃.

Figure S16: ¹H NMR-spectrum of copolymer **P1** in CDCl₃.

SEC-curves

Figure S17: SEC elugram of copolymer P1 in chloroform/*iso*-propanol/triethylamine [94/2/4].

X-ray data:

Figure S18: SWAXS pattern of CP1.

Figure S19: X-ray data of MP1 (black line), MP2 (red line) and MP3 (green line).* S20

Figure S20: X-ray data of MP4 (black line), MP5 (red line) and MP6 (green line).*

Figure S21: X-ray data of MP7 (black line), MP8 (red line) and MP9 (green line).*

Figure S22: X-ray data of MP10 (black line), MP11 (red line) and MP12 (green line).*

* Additional signals at higher 2Θ values could not be assigned and are of currently unknown origin.

Thermal properties:

Figure S23: Thermal properties of the polymer network **CP1**: a) DSC and b) TGA.

Figure S24: Thermal properties of the polymer network **CP2**: a) DSC and b) TGA.

Figure S25: Thermal properties of the copolymer P1: a) DSC and b) TGA.

Figure S26: Thermal properties of the polymer network **MP1**: a) DSC and b) TGA.

Figure S27: Thermal properties of the polymer network **MP2**: a) DSC and b) TGA.

Figure S28: Thermal properties of the polymer network **MP3**: a) DSC and b) TGA.

Figure S29: Thermal properties of the polymer network **MP4**: a) DSC and b) TGA.

Figure S30: Thermal properties of the polymer network **MP5**: a) DSC and b) TGA.

Figure S31: Thermal properties of the polymer network **MP6**: a) DSC and b) TGA.

Figure S32: Thermal properties of the polymer network **MP7**: a) DSC and b) TGA.

S32

Figure S33: Thermal properties of the polymer network **MP8**: a) DSC and b) TGA.

Figure S34: Thermal properties of the polymer network **MP9**: a) DSC and b) TGA.

Figure S35: Thermal properties of the polymer network **MP10**: a) DSC and b) TGA. S35

Figure S36: Thermal properties of the polymer network **MP11**: a) DSC and b) TGA.

Figure S37: Thermal properties of the polymer network **MP12**: a) DSC and b) TGA.

Rheological results:

Figure S38: Rheological results of CP1 at 150 °C (G' in black; G'' in red).

Figure S39: Rheological results of **CP2** at 120 °C (G' in black; G'' in red).

Figure S40: Rheological results of **MP1**: a) 50 °C, b) 100 °C and c) 150 °C (G' in black; G'' in red).

Figure S41: Rheological results of **MP2**: a) 50 °C, b) 100 °C and c) 150 °C (G' in black; G'' in red).

Figure S42: Rheological results of **MP3**: a) 50 °C, b) 100 °C and c) 150 °C (G' in black; G'' in red).

a)

Figure S43: Rheological results of **MP4**: a) 50 °C, b) 100 °C and c) 150 °C (G' in black; G'' in red).

Figure S44: Rheological results of **MP5**: a) 50 °C, b) 100 °C and c) 150 °C (G' in black; G'' in red).

Figure S45: Rheological results of **MP6**: a) 50 °C, b) 100 °C and c) 150 °C (G' in black; G'' in red).

Figure S46: Rheological results of **MP7**: a) 25 °C and b) 120 °C (G' in black; G'' in red).

S51

Figure S47: Rheological results of **MP8**: a) 50 °C, b) 100 °C and c) 150 °C (G' in black; G'' in red).

Figure S48: Rheological results of **MP9**: a) 25 °C and b) 100 °C (G' in black; G'' in red).

Figure S49: Rheological results of **MP10**: a) 50 °C, b) 100 °C and c) 150 °C (G' in black; G'' in red).

Figure S51: Rheological results of **MP12**: a) 50 °C and b) 100 °C (G' in black; G'' in red).

Summary of selected properties of the metallopolymers:

Table S1: Overview of the elemental analysis results and the thermal properties	s of
metallopolymers MP1 to MP12.	

Metallo-	Carbon	Hydrogen [%]	Nitrogen [%]	Chloride [%]	DSC: T_g	TGA: T_d
porymer	[/0]				[°C]	[°C]
MP1	62.85	8.50	3.13	0.00	no	269
MP2	65.83	8.66	2.13	0.00	no	287
MP3	64.19	8.76	2.07	3.00	39	271
MP4	61.36	8.51	3.11	0.00	37	195
MP5	64.92	8.90	1.98	0.00	23	163
MP6	64.22	8.79	2.04	3.21	53	188
MP7	64.23	8.71	3.07	0.00	64	191
MP8	62.76	8.50	2.04	0.00	24	217
MP9	64.28	8.68	2.06	3.00	51	256
MP10	65.09	8.93	3.01	0.00	35	220
MP11	66.58	9.00	2.12	0.00	33	285
MP12	65.58	8.78	2.38	2.44	42	319

Synthesis of the metallopolymers:

Metallopolymer	Polymer	Metal salt	m(Polymer)	m(Metal salt)
MP1	P1	zinc(II) nitrate	17 mg	1.41 mg
MP2	P1	zinc(II) acetate	38 mg	2.35 mg
MP3	P1	zinc(II) chloride	56 mg	2.15 mg
MP4	P1	nickel(II) nitrate	74 mg	6.06 mg
MP5	P1	nickel(II) acetate	44 mg	3.09 mg
MP6	P1	nickel(II) chloride	48 mg	3.20 mg
MP7	P1	cobalt(II) nitrate	13 mg	1.05 mg
MP8	P1	cobalt(II) acetate	50 mg	3.50 mg
MP9	P1	cobalt(II) chloride	60 mg	4.02 mg
MP10	P1	manganese(II) nitrate	42 mg	2.95 mg
MP11	P1	manganese(II) acetate	41 mg	2.80 mg
MP12	P1	manganese(II) chloride	16 mg	0.88 mg

Table S2: Amounts of the polymers and the metal salts for the synthesis of metallopolymer networks.