Supplementary Information

Symmetry analysis for magnetic structure determination

A symmetry analysis was performed using Bertaut's method¹ as implemented in the BasIReps program from the FullProf suite², in order to determine all of the possible spin configurations that are compatible with the crystal symmetry of KFeSO₄F and the propagation vector $\mathbf{k} = (1, 0, 0)$. The little group G_k coincides with the full G = C2/c space group because all symmetry operators of G leave invariant (up to a reciprocal lattice vector) the propagation vector $\mathbf{k} = (1, 0, 0)$. There are four irreducible representations associated with the 8*f* and 4*e* Wyckoff sites occupied by iron atoms:

 $\Gamma_{\rm mag}(8f) = 3 \ \Gamma_1 \oplus 3 \ \Gamma_2 \oplus 3 \ \Gamma_3 \oplus 3 \ \Gamma_4$

 $\Gamma_{\rm mag}(4e) = \Gamma_1 \oplus \Gamma_2 \oplus 2 \Gamma_3 \oplus 2 \Gamma_4$

For the 8f site (Fe1), each representation is composed of three basis vectors Ψ_i (i=1, 2, 3) which correspond to moments oriented along the *a*, *b* or *c* unit-cell directions as given in Table 1. For Fe2 and Fe3 atoms (4*f* Wyckoff site), symmetry analysis imposes magnetic moments along [010] for representations Γ_1 and Γ_2 , and perpendicular to [010] for Γ_3 and Γ_4 .

The magnetic moments in the crystal can be obtained from the magnetic moments of the sublattice j (= 1, 2) in the zero-cell with the expression:

$$\mathbf{m}_{lj} = \mathbf{m}_{0j} \exp\{-2\pi i \mathbf{k} \mathbf{R}_l\} = \mathbf{m}_{0j} \exp\{-2\pi i (1\mathbf{a}^*) \cdot (l_1 \mathbf{a} + l_2 \mathbf{b} + l_3 \mathbf{c})\} = \mathbf{m}_{0j} \exp\{-2\pi i l_1\}$$

where the lattice translation $\mathbf{R}_l = l_1 \mathbf{a} + l_2 \mathbf{b} + l_3 \mathbf{c}$ contains integer values as well as rational values due to the centering translation $\mathbf{t}_C = (1/2, 1/2, 0)$, for instance the (1/2, 1/2, 0)+ set of atoms in the conventional cell have their moment opposite to those of the zero cell because $\exp(-2\pi i l_1) = \exp(-2\pi i l_1) = -1$.

- (1) E. F. Bertaut, J. Phys. Colloq. 1971, 32 (C1), C1-C462 C1-C470.
- (2) J. Rodríguez-Carvajal, J. González Platas, Fourier Program.

SI Table 1:

Results of the symmetry analysis of the *C*2/*c* unit cell for the propagation vector $\mathbf{k} = (1, 0, 0)$. The characters ($\boldsymbol{\chi}$) of the representations and the basis vectors Ψ_i (*i* = 1, 2, 3), as well as the Fourier coefficients ($\mathbf{S}_k = \mathbf{m}$, magnetic moments) of the positions generated for the 8*f* (*x*, *y*, *z*) and 4*e* (0, y, ¹/₄) Wyckoff sites are given for each irreducible representation Γ_n ($1 \le j \le 4$). Note that atoms linked to the (¹/₂, ¹/₂, 0)+ centering have opposite magnetic moments to those of the (0, 0, 0)+ lattice.

k = (1, 0, 0)								
		Fe1 in 8f			Fe2 and Fe3 in 4e			
		Fe1(1)	Fe1(2)	Fe1(3)	Fe1(4)	Fe2,3(1)	Fe2,3(2)	
		x, y, z	$-x, y, -z^{+1/2}$	-x, -y, -z	$x, -y, z^{+1/2}$	0, y, ¼	0, -y, ³ /4	
	χ	1	1	1	1	1	1	
Γ_1	$\hat{\Psi}_1$	1, 0, 0	1,0,0	1, 0, 0	1,0,0	0, 1, 0	0, 1, 0	
<i>C</i> 2/ <i>c</i>	Ψ_2	0, 1, 0	0, 1, 0	0, 1, 0	0, 1, 0			
	Ψ_3	0, 0, 1	0, 0, 1	0, 0, 1	0, 0, 1			
	S_k	M_x, M_y, M_Z	$-M_X, M_Y, -M_Z$	M_x, M_y, M_z	$-M_X, M_Y, -M_Z$	0, M _Y , 0	0, M _Y , 0	
	χ	1	1	-1	-1	1	-1	
Γ_2	$\hat{\Psi}_1$	1, 0, 0	1,0,0	1,0,0	1, 0, 0	0, 1, 0	0, 1, 0	
<i>C</i> 2/ <i>c</i> '	Ψ_2	0, 1, 0	0, 1, 0	0, 1, 0	0, 1, 0			
	Ψ3	0, 0, 1	0, 0, 1	0, 0, 1	0, 0, 1			
	S_k	M_x, M_y, M_Z	$-M_X, M_Y, -M_Z$	$-M_X$, $-M_Y$, $-M_Z$	M_{X} , - M_{Y} , M_{Z}	0, M _Y , 0	0, -M _Y , 0	
	χ	1	-1	1	-1	1	1	
Γ ₃ <i>C</i> 2'/c'	$\hat{\Psi}_1$	1, 0, 0	1, 0, 0	1, 0, 0	1, 0, 0	1, 0, 0	1, 0, 0	
	Ψ_2	0, 1, 0	0, 1, 0	0, 1, 0	0, 1, 0	0, 0, 1	0, 0, 1	
	Ψ_3	0, 0, 1	0, 0, 1	0, 0, 1	0, 0, 1			
	$\mathbf{S}_{\mathbf{k}}$	M_X, M_Y, M_Z	M_{X} , - M_{Y} , M_{Z}	M_X, M_Y, M_Z	M_X , - M_Y , M_Z	M_X , θ , M_Z	M_{X}, θ, M_{Z}	
	χ	1	-1	-1	1	1	-1	
Γ ₄ C2'/c	Ψ_1	1, 0, 0	1, 0, 0	1, 0, 0	1,0,0	1, 0, 0	1,0,0	
	Ψ_2	0, 1, 0	0, 1, 0	0, 1, 0	0, 1, 0	0, 0, 1	0, 0, 1	
	Ψ3	0, 0, 1	0, 0, 1	0, 0, 1	0, 0, 1			
	Sk	M_X, M_Y, M_Z	M_{X} , - M_{Y} , M_{Z}	$-M_{X}, -M_{Y}, -M_{Z}$	$-M_X, M_Y, -M_Z$	M_X , θ , M_Z	$-M_X$, θ , $-M_Z$	

SI Table 2:

Result of EDX measurements averaged over five different zones of a monoclinic KFeSO₄F sample.

Element	at%
K	13.4(2)
Fe	11.8(1)
S	13.6(1)
О	51.9(3)
F	9.0(1)

Figure SI 1: DSC measurement (blue) of the monoclinic KFeSO₄F heated to 450 $^{\circ}$ C with a ramp of 1 $^{\circ}$ C/min under argon atmosphere. The onset of the monoclinic-orthorhombic phase transition is at 380 $^{\circ}$ C. The green line corresponds to a coupled TGA measurement.

Figure SI 2: *In situ* XRD patterns of the pristine monoclinic KFeSO₄F during the charge (K extracted) and subsequent discharge (Li inserted) indicative of a reversible biphasic process. Zoom at the evolution of the (002) peak during a) charge and b) discharge.

Figure SI 3: Rietveld refinement of and neutron powder diffraction patterns of KFeSO₄F at T=50 K. The red crosses, black continuous line and bottom green line represent the observed, calculated, and difference patterns, respectively. Vertical blue tick bars are the Bragg positions for space group C2/c.