Supporting Information

Janus building block-enabled fabrication of dual metal equipped coordination polymer: an ideal precursor for noble metal/metal oxide nanocomposites with excellent catalytic performance

Fang Cui, Qing Shao, Tieyu Cui,* Linxu Xu, Tongjie Yao and Xiao Zhang

The Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin 150001, PR China.

E-mail: cuit@hit.edu.cn; Fax: (+86) 451-86403646; Tel: (+86)451-86403646;

hydrophilic \longleftrightarrow hydrophobic

Fig. S1 Molecular structure of the Janus MAA- ligand, which combines two parts with distinct characters.

Fig. S2 SEM image (a), ¹H NMR spectrum (b), FTIR spectrum (c) and TGA curve (d) of Co (MAA)₂·H₂O precursors.

The Co(MAA)₂·H₂O precursor exhibits irregular morphologies (Fig. S2(a)), and its chemical composition can be identified by ¹H NMR, FTIR, TGA and element analyses measurements. In the ¹H NMR spectrum (Fig. S2(b)), the chemical shifts around 2.38 and 6.14 ppm, with an integral ration of 3:2, are assigned to methyl and methylene protons of the methacrylate ion. FTIR spectrum (Fig. S2(c)) reveals the asymmetric (1567 cm⁻¹) and symmetric (1418 cm⁻¹) stretching vibrations of the carboxylate groups, indicating the coordination of MAA⁻ to Co²⁺. Elemental analysis on the as-made sample found [C (39.03%), H (4.81%)]. Co (MAA)₂·H₂O is calculated to give [C (38.88 %), H (4.89 %)], matching closely the measured data. Furthermore, TGA data (obtained under O₂ atmosphere) is also consistent with the formula of Co (MAA)₂·H₂O. The weight loss of 7.32 % before 100 °C is assigned to the loss of crystal water (calc. 7.29 %). The weight loss of 60.36 % in the range of 195 to 320 °C corresponds to the loss of the organic components (calc. 60.23 %)

Fig. S3 (a) SEM image of Co $(MAA)_2$ nanoribbons. (b) Tapping-mode AFM and corresponding topography cross section of the adherent $Co(MAA)_2$ nanoribbon on a silica wafer.

Fig. S4 ¹H NMR (a) and FTIR spectra (b) of Co (MAA)₂ nanoribbons.

The ¹H NMR spectrum and detailed peak assignments of Co (MAA)₂ nanoribbons are shown in Fig. S4(a). The signals appearing at 2.33 and 6.10 ppm, with an integral ration close to 3:2, can be assigned to the methyl (H^a) and methylene (H^b) protons of the methacrylate ion (MAA⁻). In the FTIR spectrum (Fig. S4(b)) of the Co (MAA)₂ nanoribbons, the presence of characteristic bands at around 1580 and 1410 cm ⁻¹, belonging to the asymmetric and symmetric stretching vibrations of carboxylate groups respectively, indicates the successful coordination of methacrylate ion to cobalt ions. Moreover, element analysis was also used to identify the chemical composition of the nanoribbons. Elemental analysis on the as-made nanoribbons found [C (42.05%), H (4.31%)]. Co(MAA)₂ is calculated to give [C (41.94 %), H (4.40 %)], matching closely the measured data. All these characterizations confirm that the MMA⁻ is the only ligand bonding the metal centers, and the molecule formula of the nanoribbons is Co(MAA)₂.

Fig. S5 TGA curve of $Co(MAA)_2$ nanoribbons measured under oxygen atmosphere (heating rate: 10 °C/min).

From the TGA curve of the Co(MAA)₂ nanoribbons, we can seen the nanoribbons start to decompose under O₂ atmosphere at around 195 °C. The complete decomposition temperature is about 306 °C. TGA data further confirms the molecule formula of the as-prepared Co (MAA)₂ nanoribbons. The weight loss in the range of 195 to 320 °C corresponding to the loss of the organic bridging ligands is about 64.33 %, which is in agreement with the calculated value of 64.96 %.

n _d	h k l	Calc.	Obs.	Difference	Calc.	Obs.	Difference
		(2θ/°)	(2θ/º)	(2θ/º)	(d/Å)	(d/Å)	(d/Å)
1	100	4.978	4.980	0.002	17.7376	17.7304	-0.0072
2	101	6.260	6.250	-0.010	14.1081	14.1301	0.0220
3	002	7.590	7.590	0.000	11.6381	11.6383	0.0002
4	011	8.832	8.830	-0.002	10.0041	10.0064	0.0023
5	110	9.404	9.400	-0.004	9.3971	9.4009	0.0038
6	111	10.143	10.150	0.007	8.7137	8.7079	-0.0053
7	013	13.923	13.850	-0.073	6.3554	6.3888	0.0334
8	300	14.971	14.970	-0.001	5.9125	5.9133	0.0008
9	004	15.213	15.220	0.007	5.8191	5.8167	-0.0024
10	104	16.016	16.000	-0.016	5.5291	5.5348	0.0057
11	302	16.805	16.810	0.005	5.2713	5.2699	-0.0014
12	310	16.984	16.970	-0.014	5.2163	5.2206	0.0043
13	022	17.717	17.700	-0.017	5.0021	5.0069	0.0048
14	312	18.625	18.610	-0.015	4.7600	4.7641	0.0041
15	313	20.499	20.500	0.001	4.3289	4.3289	0.0000
16	412	22.894	22.900	0.006	3.8812	3.8804	-0.0008
17	403	23.083	23.090	0.007	3.8500	3.8488	-0.0010
18	031	24.382	24.380	-0.002	3.6476	3.6480	0.0004
19	131	24.901	24.900	-0.001	3.5728	3.5730	0.0002
20	502	26.241	26.240	-0.001	3.3934	3.3935	0.0001
21	225	26.939	26.930	-0.009	3.3070	3.3081	0.0011
22	406	30.593	30.590	-0.003	2.9198	2.9201	0.0003
23	611	31.531	31.520	-0.011	2.8351	2.8361	0.0010
24	040	32.292	32.290	-0.002	2.7699	2.7701	0.0002

Table S1. XRD data for $Co(MAA)_2$ nanoribbons.

Table S2. The Kamlet-Taft parameters (α : hydrogen-bond donor ability, β : hydrogen-bond acceptor ability) and dielectric constant (ϵ) of the solvents used in this study.

Solvent	α	β	3	Whether	Whether
				miscible	forming
				with water?	Co(MAA) ₂
					nanoribbon
water	1.17	0.47	78	Yes	No
acetic acid	1.12	0.45	6	Yes	No
methanol	0.93	0.66	33	Yes	No
ethanol	0.83	0.75	25	Yes	Yes
isopropanol	0.76	0.84	20	Yes	Yes
dimethyl sulfoxide (DMSO)	0.00	0.76	47	Yes	Yes
dimethylfor mamide (DMF)	0.00	0.76	37	Yes	Yes
tetrahydrof uran (THF)	0.00	0.55	8	Yes	Yes
chloroform	0.20	0.10	5	No	No
n-hexane	0.00	0.00	2	No	No

Fig. S6 SEM images of the $Co(MAA)_2$ nanoribbons prepared by using isopropanol (a), DMSO (b), DMF (c) and THF (d) as the initiation solvents respectively. Insets: images showing the formation of a viscous gel upon generation of $Co(MAA)_2$ nanoribbons in corresponding initiation solvents.

Fig. S7 XPS spectra of Co $(MAA)_2$ (a) and Co $(MAA)_2$ /Pd(II) nanoribbons (b).

Fig. S8 FTIR spectra of (a) $Co(MAA)_2$ and (b) $Co(MAA)_2/Pd(II)$ nanoribbons. The peak around 430 cm⁻¹ corresponds to the Pd(II)-alkene stretching frequency, and is highlighted by the dotted line.

Fig. S9 SEM image of the Co(MAA)₂/Pd(II) nanoribbons.

Fig. S10 Powder XRD patter of Pd/Co₃O₄ composite nanoribbons.