Electronic Supplementary Information

Hierarchical nanosheet-based CoMoO₄-NiMoO₄ nanotubes for applications in asymmetric supercapacitor and oxygen evolution reaction

Zhuoxun Yin,^a Yujin Chen,^{*a} Yang Zhao,^a Chunyan Li,^{*a} Chunling Zhu^{*b} and Xitian Zhang ^c

^aKey Laboratory of In-Fiber Integrated Optics, Ministry of Education, and
 College of Science, Harbin Engineering University, Harbin 150001, China.
 Fax: 86-451-82519754; Tel: 86-451-82519754; E-mail:
 chenyujin@hrbeu.edu.cn and chunyanli@hrbeu.edu.cn

^bCollege of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China. E-mail: chunlingzhu@hrbeu.edu.cn

^cKey Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, and School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China.

Figure S1 The magnified SAED pattern of NCMNT-3.

Figure S2 HRTEM images of NCMNT-3.

Figure S3 a) TEM image, b) STEM image, c) Mo mapping, d) Ni mapping, e) Co mapping, and f) O mapping.

Figure S4 (a) Nitrogen adsorption and desorption isotherms and (b) the corresponding pore-size distribution calculated by BJH method from the desorption branch of hierarchical NCMNT-3.

Figure S5 XRD patterns of the hierarchical NCMNT-1, NCMNT-2 and NCMNT-3.

Figure S6 SEM images of the hierarchical nanosheet-based nanotubes with different added weight of cobalt chloride. (a) NCMNT-1 and (b) NCMNT-2.

Figure S7 (a) Nitrogen adsorption and desorption isotherms and (b) the corresponding pore-size distribution calculated by BJH method from the desorption branch of hierarchical NCMNT-1.

Figure S8 (a) Nitrogen adsorption and desorption isotherms and (b) the corresponding pore-size distribution calculated by BJH method from the desorption branch of hierarchical NCMNT-2.

Figure S9 (a) SEM image of the sample obtained as the added weight of cobalt chloride was 95 mg and (b) SEM image of the sample obtained as the added weight of cobalt chloride was 590 mg.

Figure S10 SEM image of the sample without nickel acetate.

Figure S11 a) XRD and b) SEM image of the sample obtained as cobalt chloride was replaced with cobalt acetate. The experimental conditions are similar to those of synthesis of NCMNT-3, but cobalt chloride was replaced with cobalt acetate (the molar quantity molar 68 mg).

Figure S12 SEM image of the samples obtained using MoO₃ nanorods and cobalt acetate as precursors in the water–ethanol (volume ratio = 1: 1) system and the hydrothermal treatment proceeded at 90°C for 5 h. a) Weight of cobalt acetate is 68 mg, b) weight of cobalt acetate is 78 mg, c) weight of cobalt acetate is 78 mg, and d) weight of cobalt acetate is 620 mg. The scar bars: 2 μ m.

Figure S13 The galvanostatic charge–discharge curves at a current of 5 mA under a potential of 1.6 V in 2 M KOH solution.

	Special capacitance (F g ⁻¹) at different current density (A g ⁻¹)						Ref.	
	1 A g ⁻¹	2 A g ⁻¹	3 A g ⁻¹	5 A g ⁻¹	8 A g ⁻¹	10 A g ⁻¹	20 A g ⁻¹	
NMNT	887	785	714	603	510	490	136	This work
NCMNT-1	865	839	839	768	728	707	642	This work
NCMNT-2	1307	1219	1172	1109	1047	1018	878	This work
NCMNT-3	1424	1317	1262	1189	1089	1040	828	This work
Layered H ₂ Ti ₆ O ₁₃ -Nanowires	<800	684	_	<650		504		4
Vanadium Nitride	1340 (2 mV s ⁻¹)	_	_	_	_	_	554 (100mV s ⁻¹)	8
Graphene/MnO ₂ Nanostructured Textiles	$315 (2)$ mV s^{-1}	-	-	-	-	-	-	15
Carbon nanofiber/MnO ₂ coaxial nano- cables	311 (2 mV s ⁻¹)	_	_	—	_	_	_	16
Co _{0.56} Ni _{0.44} Oxide Nanoflake	1227	—	—	—	—	—	—	17
NiMoO ₄ ·xH ₂ O nanorods	1136 (5 mA cm ⁻²)	960 (10 mA cm ⁻²)	_	850 (20 mA cm ⁻²)	778 (30 mA cm ⁻²)	725 (40 mA cm ⁻²)	688 (50 mA cm ⁻²)	18
NiMoO ₄ ·xH ₂ O nanoclusters	680	590	—	412	This work	393	—	19
CoMoO ₄ nanorods	286 (5 mA cm ⁻²)	246 (10 mA cm ⁻²)	—	219 (20 mA cm ⁻²)	202 (30 mA cm ⁻²)	192 (40 mA cm ⁻²)	173 (50 mA cm ⁻²)	20
NiMoO ₄ nanotubes	864	777	682	605	—	_	_	21
MnMoO ₄ - CoMoO ₄ nanowires	187.1	<175	<140	-	-	_	<80	22
CoMoO ₄ NiMoO ₄ ·xH ₂ O bundles	1027 (1.26 A g ⁻¹)	988 (2.5 A g ⁻¹)	_	916 (6.25 A g ⁻¹	_	826 (12.6 A g ⁻¹)	750 (25 A g ⁻¹)	23
ß-NiMoO₄− CoMoO₄·xH₂O	1472 (5 mA	<1350 (10 mA	<1200 (15	<1000 (20	_	_	_	24

 Table S1 Comparison of the specific capacitances of NCMNTs with literature data.

cm ⁻²)	cm ⁻²)	mA	mA		
		cm ⁻²)	cm ⁻²)		

Table S2Comparison of the energy density and power density of AC//NCMNT-3with literature data..

	Energy density density (W Kg ⁻¹)	Refs.	
AC//NCMNT-3	33 /375	25.3 /1500	This work
RGO-RuO ₂ //RGO-PANI	26.3 / (NA)	—	10
AC//Co _{0.56} Ni _{0.44} Oxide Nanoflake	34.5 /133	22.5 /1333.3 /	17
AC//NiMoO4·xH2O nanorods	34.4/65	24.9 /1650	18
AC//CoMoO ₄ -NiMoO ₄ ·xH ₂ O	25 /165	15.5/1650	23
bundles			
AC//B-NiMoO4-CoMoO4·xH2O	28/100	18 /1000	24

	Potential (V vs R cm ⁻²)	Tafel slope	Ref.		
	$J_a=10 \text{ mA cm}^{-2}$	$J_a=100 \text{ mA cm}^{-2}$	J_a =300 mA cm ⁻²	(mv/d ec ⁾	
NCMNT-3	1.530	1.585	1.617	68	This work
NCMNT-2	1.557	1.638	1.691	94	This work
NCMNT-1	1.570	1.655	1.730	98	This work
NMNT	1.589	1.675	1.770	126	This work
N/C materials	1.610 ± 0.01 (PH=13)	-	-	_	27
Ni ₃ N nanosheets	1.486	1.580 $(J_a=52.3 \text{ mA cm}^{-2})$	1.730 ($J_a=153.2$ mA cm ⁻²)	45	31
Surface- Oxidized Multiwall Carbon Nanotubes	1.580	—	_	41	32
α-Ni(OH) ₂ spheres	1.561 (0.1 M KOH)	-	-	42	33
FeMoO ₄	-	658±5 mV vs Hg/HgO≈1.588 V vs RHE	702±6 mV vs Hg/HgO ≈1.632 V vs RHE	37	35
CoMoO ₄	-	670±8 mV vs Hg/HgO≈1.6 V vs RHE	723±17 mV vs Hg/HgO≈1.653 V vs RHE	44	35
NiMoO ₄	-	685±3 mV vs Hg/HgO≈1.615 V vs RHE	740±10 mV vs Hg/HgO ≈1.67 V vs RHE	42	35
NiMoO ₄	—	—	—	70	36
hollow Co ₃ O ₄ microspheres	1.630 (PH=13)	_	_	_	37

Table S3 Comparison of the OER activity of NCMNT-3 with literature data in the alkaline media.

Graphene- Co ₃ O ₄	1.543	-	-	56	38
Co ₃ O ₄ /NiCo ₂ O ₄ DSNCs	1.570	—	—	88	39
Mn3O4/CoSe ² Nanocomposi te	1.680 (0.1 M KOH)	—	_	49	40
PNG-NiCo	1.603 (5 mA cm ⁻²) 1.664 (16.5 mA cm ⁻²)	1.794 (21.1 mA cm ⁻²)	_	156	41
Co ₃ O ₄ -35	1.706	—	—	—	42
Co ₃ O ₄ /SWNT s	1.824	-	-	104	43
Mesoporous Co ₃ O ₄ Nanoflakes	1.610	—	_	48	44
NG-NiCo	-	_	1.630 (145.3 mA cm ⁻²) (0.1 M KOH)	614	45
Zn _x Co _{3-x} O ₄ - 1:3	1.550	-	-	51	46
Ni-Co ₃ O ₄ -A	≈1.760 (0.1 M KOH)	_	_	_	47
5.9 nm Co ₃ O ₄	1.558	1. 660	1.730 (200 mA cm ⁻²)	50	48