Supporting Information for

An Amino Acid Metal-Organic Framework with LCY Topology as Ecofriendly Catalyst for CO₂ Transformation to Cyclic Carbonate: Mechanistic Insights with Structure - DFT Correlations.

Amal Cherian Kathalikkattil,¹ Robin Babu,¹ Roshith Kuruppathparambil Roshan,¹ Hankyul Lee,² Hyungjun Kim,² Jose Tharun,¹ Eringathodi Suresh,^{*3} and Dae-Won Park^{*1}

¹School of Chemical and Biomolecular Engineering, Pusan National University, Busan 609-735, South Korea, Fax: (+82) 51-512-8563

²Complex molecular-Systems Multiscale Design Lab., Graduate School of EEWS, KAIST, Daejeon, South Korea

³Analytical Discipline and Centralized Instrument Facility, CSIR–Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar –364 002, Gujarat, India.

*Corresponding Author E-mail: dwpark@pusan.ac.kr (Prof. Dae-Won Park)

Figure S1. FT-IR spectra of ZnGlu(P)

Figure S2. (a) XPS analysis of ZnGlu with Zn2p scan (inset) and (b) N1s scan

Figure S3. TGA curves for the as-synthesized ZnGlu, pore-evacuated sample and methanolcontaining samples.

Figure S4. Nitrogen adsorption-desorption isotherm for ZnGlu at 77K.

Figure S5. Carbon dioxide uptake at 273K.