Facile Method to Synthesize Carbon Layer Embedded into

Titanium Dioxide Nanotubes with Metal Oxide Decoration for

Electrochemical Applications

Yan-Yan Song,^a Ya-Hang Li,^a Jing Guo,^a Zhi-Da Gao,*a and Ying Li*b

^a.College of Science, Northeastern University, Wenhua Road 3-11, Shenyang, China, E-mail: <u>gaozd@mail.neu.edu.cn</u>

^bJiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China, E-mail: <u>vingli@seu.edu.cn</u>

Fig. S1.Thermogram of TiO₂/C-RuO₂NTs taken under the flow of O₂during the temperature ramp.

The thermal stability of TiO₂/C-RuO₂NTswas investigated by using the TGA technique. The first step of weight loss before 130 °C was attributed to theremoval of the adsorbed water. The second weight loss from 200 to 650 °C was attributed to the the transfer of TiO₂ crystalline from amorphous to anatase, the removal of crystalline water in hydrous ruthenium oxide and the subsequent burning of carbon layers.

Fig. S2. TEM images of (A) the bare TiNTs before annealing, (B) bare TiNTs after annealing,(C) RuO₂ decorated C/TiNTs samples, and (D) the high-resolution image.

Fig. S3. XRD patterns for (A) bare anatase nanotubes (curve a), TiO_2 -RuO₂NTs (curve b), and TiO_2 /C-RuO₂NTs (curve c), and (B) the details for TiO_2 /C-RuO₂NTs.

Fig. S4.XPS spectra of the TiO_2/C NTs samples after decorating by Cu nanoparticles (curve a), and after the RuO₂ formed by galvanic displacement of Cu (curve b).

C Ka1_2

Ti Ka1

Ru La1

Element	wt%	atm%
S		
Ti	54.60	29.00
0	40.35	64.16
С	2.90	6.14
S	0.27	0.22
Cu	0.04	0.02
Ru	1.85	0.46

SEM image

Fig. S5.EDS analysis on cross-section of tubes. Rectangle indicate the EDS mapping area.

60µn

Fig. S6. The influence of the number of PSS-Cu²⁺bilayers during LBL process on the electrochemical currents of TiO_2/C -RuO₂NTs based electrodes.

Fig. S7. Typical charge-discharge cycle curves of the $TiO_2/C-RuO_2NTs$ obtained at current density of 0.05 mAcm⁻².

Fig. S8.Cyclic voltammograms of TiO_2/C -PtNTs samples in a 1 M H_2SO_4 and 1 M $CH_3OH + 1M H_2SO_4$ solution at a scan rate of 50 mV s⁻¹.